• Title/Summary/Keyword: non-destructive

Search Result 1,542, Processing Time 0.034 seconds

Flaw Detection in Ceramics using Hough transform and Least squares

  • Hong, Dong-Jin;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly show gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares are then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.

Analysis of Vulnerable Parts based on Non-destructive Testing Data of Tower Crane Welding Parts (타워크레인의 용접부 비파괴검사 데이터 기반 취약부위 분석)

  • Jeong, SeongMo;Lim, Jae-Yong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • The purpose of this study is to investigate vulnerable parts of tower crane structures by analyzing extensive non-destructive test data. Approximately ten percent of domestically registered tower cranes were inspected by using magnetic particle inspection. The testing was carried out as advised in KS B 0213. The non-destructive results was analyzed with respect to jib types, age and crane size. As a result, the number of crack occurrences were the largest in mast parts, followed by main jib part. Moreover, it was found that turntables were important parts deserved to be noticed at the perspective of safe maintenance.

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

A Structure Non-Contact and Non-destructive Evaluation Using Laser-Ultrasonics Application (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo;Kim You-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The defects evaluation of the interior and the surface would be considered as vital characteristics in predicting the total life span of the steel structure. More importantly, the understandings in the interior composite of welding zone and the notifications in the presence, the formation, and the positioning of the non-metallic inclusion are necessary as well, since there were signs of relatively high defect frequency presented in the welding zone. The ultrasonic testing is a highly recommended technique chosen from among other techniques because of variety of advantages in conducting the non-destructive testing for the welding zone. However, the ultrasonic testing had technical disadvantages referred as followings; the problems due to the couplant between the PZT and the specimen, the formations that were miniature and complex, the moving subject, and the high temperature surrounding the specimen. This research was conducted to resolve the technical disadvantages of the contact ultrasonic testing by studying the non-contact ultrasonic testing where the ultrasonic waves were transferred by the laser, and revealing the specimen defects at its interior part and its surface part. The ultimate goal of this research was to develop a non-destructive evaluation applying the laser manipulated ultrasonic method for the steel structure.

  • PDF

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

A Review on Meat Quality Evaluation Methods Based on Non-Destructive Computer Vision and Artificial Intelligence Technologies

  • Shi, Yinyan;Wang, Xiaochan;Borhan, Md Saidul;Young, Jennifer;Newman, David;Berg, Eric;Sun, Xin
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.563-588
    • /
    • 2021
  • Increasing meat demand in terms of both quality and quantity in conjunction with feeding a growing population has resulted in regulatory agencies imposing stringent guidelines on meat quality and safety. Objective and accurate rapid non-destructive detection methods and evaluation techniques based on artificial intelligence have become the research hotspot in recent years and have been widely applied in the meat industry. Therefore, this review surveyed the key technologies of non-destructive detection for meat quality, mainly including ultrasonic technology, machine (computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, Raman spectra technology, and electronic nose/tongue. The technical characteristics and evaluation methods were compared and analyzed; the practical applications of non-destructive detection technologies in meat quality assessment were explored; and the current challenges and future research directions were discussed. The literature presented in this review clearly demonstrate that previous research on non-destructive technologies are of great significance to ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time inspection and quality control in meat production. In the near future, with ever-growing application requirements and research developments, it is a trend to integrate such systems to provide effective solutions for various grain quality evaluation applications.

Non-destructive Analysis of Snail Trail on Silver Grid Line in PV Module (비파괴 분석법을 적용한 결정질 태양전지 모듈의 Snail trail 현상 연구)

  • Kim, Dajung;Kim, Namsu;Hwang, Kyung-Jun;Lee, Ju Ho;Jeong, Sinyoung;Jeong, Dae Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • In recent years, discoloration defects, called as snail trail, have been observed at many crystalline photovoltaic modules after a period of time ranging from several months to several years after initial installation. It has been reported that this phenomenon doesn't impact on the performance of photovoltaic modules, but it can be detected through simple visual inspection. The origin and detailed mechanism for the formation have not been identified. In this study, non-destructive analysis by Raman spectroscopy has been carried out to investigate the origin of this phenomenon. In parallel, destructive analysis by scanning electron microscopt and transmission electron microscopy was also performed in order to confirm the results from non-destructive method. Through the extensive analysis, it was found that the main cause for discoloration is the formations of $Ag_2CO_3$ and $AgC_2H_3O_2$. Detailed mechanism for the formation of these particles was indentified through systematic studies.

Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks

  • Alexandridis, Alex;Stavrakas, Ilias;Stergiopoulos, Charalampos;Hloupis, George;Ninos, Konstantinos;Triantis, Dimos
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.919-932
    • /
    • 2015
  • This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.

Evaluation of Flow Properties of Steel Using Advanced Indentation System (비파괴적 연속압입시험 기법을 응용한 구조용 강의 소성 물성 평가)

  • Jang, J.I.;Son, D.I.;Choi, Y.;Park, S.C.;Kwon, D.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.191-194
    • /
    • 2002
  • The tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards. However, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement for some cases including on-service facility materials. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using advanced indentation system and its application fields are reviewed and discussed.

  • PDF