• 제목/요약/키워드: non-critical vibration

검색결과 75건 처리시간 0.029초

부가질량을 갖는 구속 외팔송수관의 비선형 동특성 (Nonlinear Dynamic Charateristics of Constrained Cantilever Tube with Attached Mass)

  • 정구충;임재훈;최연선
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.561-568
    • /
    • 2004
  • The nonlinear dynamic characteristic of a straight tube conveying fluid with constraints and an attached mass on the tube is examined in this study An experimental apparatus with an elastomer tube conveying water which has an attached mass and constraints is made and comparisons are made between the theoretical results from the non-linear equation of motion of piping system and the experimental results. The comparisons show that the tube is destabilized as the magnitude of the attached mass increases, and stabilized as the position of the attached mass closes to the fixed end. In case of a small end-mass, the system shows complicated and different types of solutions. For a constant end-mass. the system undergoes a series of bifurcations after the first Hopf bifurcation, as the flow velocity increases. which causes chaotic motions of the tube eventually.

A complete S-shape feed rate scheduling approach for NURBS interpolator

  • Du, Xu;Huang, Jie;Zhu, Li-Min
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.206-217
    • /
    • 2015
  • This paper presents a complete S-shape feed rate scheduling approach (CSFA) with confined jerk, acceleration and command feed rate for parametric tool path. For a Non-Uniform Rational B-Spline (NURBS) tool path, the critical points of the tool path where the radius of curvature reaches extreme values are found firstly. Then, the NURBS curve is split into several NURBS sub-curves or blocks by the critical points. A bidirectional scanning strategy with the limitations of chord error, normal/tangential acceleration/jerk and command feed rate is employed to make the feed rate at the junctions between different NURBS blocks continuous. To improve the efficiency of the feed rate scheduling, the NURBS block is classified into three types: short block, medium block and long block. The feed rate profile corresponding to each NURBS block is generated according to the start/end feed rates and the arc length of the block and the limitations of tangential acceleration/jerk. In addition, two compensation strategies are proposed to make the feed rate more continuous and the arc increment more precise. Once the feed rate profile is determined, a second-order Taylor's expansion interpolation method is applied to generate the position commands. Finally, experiments with two free-form NURBS curves are conducted to verify the applicability and accuracy of the proposed method.

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects

  • Shen, J.P.;Li, C.;Fan, X.L.;Jung, C.M.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.105-113
    • /
    • 2017
  • A microstructure-dependent dynamic model for silicon nanobeams with axial motion is developed by considering the effects of nonlocal elasticity and surface energy. The nanobeam is considered to subject to both transverse and longitudinal loads arising from nanostructural surface effect and all positive directions of physical quantities are defined clearly prior to modeling so as to clarify the confusions of sign in governing equations of previous work. The nonlocal and surface effects are taken into consideration in the dynamic behaviors of silicon nanobeams with axial motion including circular natural frequency, vibration mode, transverse displacement and critical speed. Various supporting conditions are presented to investigate the circular frequencies by a numerical method and the effects of many variables such as nonlocal nanoscale, axial velocity and external loads on non-dimensional circular frequencies are addressed. It is found that both nonlocal and surface effects play remarkable roles on the dynamics of nanobeams with axial motion and cause the frequencies and critical speed to decrease compared with the classical continuum results. The comparisons of the non-dimensional calculation values by present and previous studies validate the correctness of the present work. Additionally, numerical examples for silicon nanobeams with axial motion are addressed to show the nonlocal and surface effects on circular frequencies intuitively. Results obtained in this paper are helpful for the design and optimization of nanobeam-like microstructures based sensors and oscillators at nanoscale with desired dynamic mechanical properties.

Nanofluid flow and heat transfer from heated square cylinder in the presence of upstream rectangular cylinder under Couette-Poiseuille flow

  • Sharma, Swati;Maiti, Dilip K.;Alam, Md. Mahbub;Sharma, Bhupendra K.
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.65-75
    • /
    • 2019
  • A heated square cylinder (with height $A^*$) is kept parallel to the cold wall at a fixed gap height $0.5A^*$ from the wall. Another adiabatic rectangular cylinder (of same height $A^*$ and width $0.5A^*$) is placed upstream in an inline tandem arrangement. The spacing between the two cylinders is fixed at $3.0A^*$. The inlet flow is taken as Couette-Poiseuille flow based non-linear velocity profile. The conventional fluid (also known as base fluid) is chosen as water (W) whereas the nanoparticle material is selected as $Al_2O_3$. Numerical simulations are performed by using SIMPLE algorithm based Finite Volume approach with staggered grid arrangement. The dependencies of hydrodynamic and heat transfer characteristics of the cylinder on non-dimensional parameters governing the nanofluids and the fluid flow are explored here. A critical discussion is made on the mechanism of improvement/reduction (due to the presence of the upstream cylinder) of heat transfer and drag coefficient, in comparison to those of an isolated cylinder. It is observed that the heat transfer increases with the increase in the non-linearity in the incident velocity profile at the inlet. For the present range studied, particle concentration has a negligible effect on heat transfer.

풍력발전기 드라이브트레인 공진 해석 (Analysis of Resonance for Drive-train in Wind Turbine)

  • 임상혁;박선호;방조혁;정진화;류지윤
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.20-27
    • /
    • 2017
  • This study investigated the problems in current practice of drive-train resonance analysis procedure and suggested solutions. The first problem is the resonance occurrence at the un-identified resonance point by the current practice, as for a solution the force spectrum analysis for each critical force transmitting component was suggested. The second one is the inaccurate estimation of potential resonance point in eigenfrequency analysis because of the non-consideration about the eigenfrequency dependency on rotor-speed, the fine linearization at each rotor speed point all over operational range was proposed to account for the affection. Lastly the insufficient time for resonance activation under run-up simulation condition was recognized as a problem in resonance load increasing analysis, as an alternative, steady state condition was suggested to estimate the maximum load increasing level.

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.201-211
    • /
    • 2018
  • This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.