• Title/Summary/Keyword: non-contact measurement

Search Result 494, Processing Time 0.028 seconds

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

Design of a Heart Rate Measurement System Using a Web Camera

  • Jang, Seung-Ju
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2022
  • In this paper, we design a heart rate measurement system using a web camera. In order to measure the heart rate, face image information is acquired and classified. The face image data is collected from web camera. The heart rate is measured using the collected face image data. We design a function to measure heart rate using input of face information using a web camera in non-contact manner. We design a function that reads face information and estimates heart rate by analyzing face color. An experiment was performed to compare the non-contact heart rate with the actual measured heart rate. The heart rate measurement system using a web camera proposed in this paper is a technology that can be used in various fields. It will be used in sports fields that require heart rate measurement at a low cost.

Non contact Coupler Design in Non contact Power Supply (비접촉 전원장치의 비접촉 커플러 설계)

  • Ryu, M.H.;Cha, H.N.;Baek, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1500-1502
    • /
    • 2005
  • In this paper, the electrical characteristics of the non-contact transformer is presented using conventional coupled inductor theory. Each non-contact transformer is analyzed through simulation and measurement. In high power applications, non-contact transformer is so bulky and heavy that it should be split by some light transformers. So non-contact transformer needs several small transformer modules which are connected series or parallel to transfer the primary power to the secondary one. This paper shows analytic result of the each non-contact transformer module and comparison result between series-connection and parallel-connection of the non-contact transformer. The results are verified on the simulation based on the theoretical analysis and the 30kW experimental prototype.

  • PDF

Measurement Errors of Non-contact Type Vibration Sensors Used for Precision Measurement of Shaft Vibration (정밀 축진동 측정에 사용되는 비접촉식 진동센서의 측정오차)

  • 전오성;김동혁;최병천
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 1991
  • When non-contact type vibration probes are used for the precision measurement of shaft vibration, they can induce the measurement errors due to the shaft curvature since they have been calibrated for the flat plate. In this study the errors due to the shaft radius and the misalignment between the shaft and probe centerlines are analyzed, and an in-situ calibration tool, which can be conveniently used for calibration independent of the shaft curvature and material, is introduced.

  • PDF

Development of Non-contact Image Measuring Technique for Evaluating Micro-relief (미세주름 측정을 위한 비접촉식 영상측정기술의 발전)

  • Kim, Nam-Soo;Kim, Yong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.253-257
    • /
    • 2005
  • Assurance of the objectivity and reproducibility is a major key point in wrinkle measurement used for evaluating the degree of skin aging. The measurement of relief is quickly converted to a non-contact method, of which tools or instruments do not come in contact with skin directly, to minimize the artificial effects which influence the shape or depth of the relief. Here, we showed how wrinkle measurement techniques have been changed briefly and compared PRIMOS and replica method in the point of view of measurement principle and features, the former is non-contact fringe projection tool and the latter is contact type of the method.

Development of Automated Non-contact Thickness Measurement Machine using a Laser Sensor (레이저센서를 이용한 비접촉식 두께자동측정기 개발)

  • Cho, Kyung-Chul;Kim, Soo-Youn;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2015
  • In this study, we developed an automated non-contact thickness measurement machine that continuously and precisely measures the thickness and warp of a PCB product using a laser sensor. The system contains a measurement part to measure the thickness in real time automatically according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The measurement machine was utilized to evaluate the performance at each step to minimize measurement error. At the zero setting for the initial setup, the standard deviation of the 216 samples was determined to be $5.52{\mu}m$. A measurement error of 0.5mm and 1.0mm as a standard sample in the measurement accuracy assessment was found to be 2.48% and 2.28%, respectively. In the factory acceptance test, the standard deviation of 1.461mm PCB was measured as $28.99{\mu}m$, with a $C_{pk}$ of 1.2. The automatic thickness measurement machine developed in this study can contribute to productivity and quality improvement in the mass production process.

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Automation measurement of a 3D scanner using a robot simulator (로봇시뮬레이터를 이용한 3 차원 스캐너의 측정 자동화)

  • 유희욱;장평수;장민호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.836-839
    • /
    • 2004
  • Qualitative elevation of products is very important Part. A business racking us brains to find for qualitative elevation of products. Recently, measurement accuracy of a non-contact 3D scanner has been rapidly improving. As a result, the number application cases of non-contact 3D scanners are increasing. A non-contact 3D scanner is capable of measuring a curved surface rapidly and has high resolution. It is more affordable and potable than the CMMs, It is therefore expected to be applied more frequently in more diverse industries. Automating the measuring process using a non-contact 3D scanner and developing a technology, which allows a user to measure easily, will eventually improve the quality of products. As their inspection and analysis processes improve.

  • PDF

The Strain Measurement of Pure Aluminum Welded Zone by the Laser System (레이저 계측에 의한 순알루미늄 용접부의 스트레인 측정)

  • 성백섭;차용훈;이연신
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Currently knowledge of strain in welds has mainly been obtained from strain gage method; that is directly attaching the gage to the most of the material. The very flew non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The paper is on the measurement of the strain caused by the characteristics and the temperature changes of the GTA welded zone employed with 3D ESPI system that is functionally modified through the laser ESPI system. This system may be applied the steel plate such as for the electronics, chemistry, flood instrument and electronic appliances.