• Title/Summary/Keyword: non-combustible materials

Search Result 25, Processing Time 0.023 seconds

Development of Non-flammable exterior design Molding using Cellular Light-weight Concrete (CLC를 활용한 공동주택 불연성능 외벽몰딩 개발)

  • Kwon, Hae-Won;Gong, Min-Ho;Lee, Chang-Yong;Jeong, Gab-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.54-55
    • /
    • 2020
  • Recently, "The rules on the standards of evacuation and fire protection of buildings" require that non-burnable materials such as non-combustible and semi-non-combustible materials be used as the materials applied to the building's exterior walls, but styrofoam, which is a combustible material, has been applied a lot and became a social issue. In this study, we developed a non-combustible outer wall molding to secure construction and economic feasibility and free expression using CLC(CLC: Cellular Light-weight Concrete).

  • PDF

Insulation Property of Cement-based Non-combustible Inorganic Insulation Using MgO and Redispersible Polymer Powder (산화마그네슘 및 재유화형 분말수지를 사용한 시멘트계 불연단열재의 단열특성)

  • Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.120-121
    • /
    • 2021
  • The organic insulation material has excellent thermal insulation property, but it is difficult to expect fire stability, and semi inorganic insulation only delays combustible hour but it is difficult to expect fire stability. In this study, thermal insulation property of cement-based non-combustible inorganic insulation using cement and non combustible materials and redispersible polymer powder was studied. As a result of the experiment, the thermal insulation property decreased as the use of redispersible polymer powder increased, but the heat insulation property improved when using the appropriate amount.

  • PDF

Development of Organic-Inorganic Hybrid Insulating Materials with Semi-Non-Combustible Using by Recycling Gypsum (재활용 석고 부산물을 이용한 준불연 유무기 융합 단열재 개발 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.431-437
    • /
    • 2019
  • The purpose of this study is to develop an organic-inorganic hybrid insulation materials which has an economic feasibility of organic level and excellent adiabatic performance and fire stability by impregnating organic materials with inorganic binder solutions. The organic base was commercial polyurethane sponge, and the inorganic binder slurry was prepared by mixing water and additives into recycled gypsum byproducts. As a result of evaluation of the developed materials, it was confirmed that it not only has excellent insulation performance of a thermal conductivity of 0.051 W/mK or less but also it is a semi-non-combustible materials specified in the Ministry of Land, Infrastructure and Transport Notice No. 2015-744. The developed materials can also be controlled for thermal conductivity and flame retardance according to density control during manufacturing process, and thus it can be applied to various insulation materials.

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

A Landfill Mining Technology by Trommel Screen System (트롬멜 스크린 시스템을 이용한 Landfill Mining기술)

  • Choe, Gap-Seok;Choe, Dong-Sun;Na, Gyeong-Deok;Lee, Byeong-Seon
    • 연구논문집
    • /
    • s.34
    • /
    • pp.1-10
    • /
    • 2004
  • Landfill Mining is becoming more widely used in many closed landfill sites in the world. Many of existing landfills will be excavated inevitably owing to building the clean environment with the new structures and developing the cities in cramped country. This paper aimed at the introducing the design technology of the trommel screen and its in-site applied performance of the trommel screen system through experiments , which system is under developing by one of the national project and the analysis results of influencing factors to the environment . The result of the theoretical estimation agrees well with the experimental data, so that the sorting system could be able to be applied with the requirements of the purpose of end-items. As a result of the analysis, any hazardous materials including heavy metals met the limitions of the criteria in this experiment. In geotechnical enngineering, it will. desireable to use the sorted soils mixing with another soils in accordance with the requirements of the usages.

  • PDF

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.

Hot Rolling Properties of Non-combustible AZ31-xCa Magnesium Alloys (난연성 AZ31-xCa 마그네슘합금의 열간압연 특성)

  • Yim C. D.;You B. S.;Lee J. S.;Kim W. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.55-62
    • /
    • 2004
  • In this study, the effects of Ca content and processing variables on hot rolling properties of gravity cast AZ31-xCa alloys were evaluated systematically. The number and length of side crack were decreased with increasing preheating temperature and decreasing reduction ratio per pass and Ca content. The UTS and YS were not strongly dependent on the Ca content but the elongation decreased with increasing Ca content. The decrease of elongation in Ca containing alloys was least when the sheets were fabricated under preheating temperature of $400^{\circ}C$ and reduction ratio per pass of $15\%$. The sheets had the sound external features with little side cracks by homogenization of gravity cast AZ31-xCa alloys before hot rolling. In the cases of AZ31-xCa alloys containing under $1wt.\%$ Ca, the annealed sheets after homogenization and hot rolling had the similar tensile properties to those of AZ31 sheet.

  • PDF

선박 화재안전과 SOLAS 협약

  • Ryu, Eun-Yeol
    • Fire Protection Technology
    • /
    • s.17
    • /
    • pp.24-32
    • /
    • 1994
  • This article introduces the transition of SOLAS (The International Convention for the Safety of Life Sea) safety regulations for fire protection, fire detection and fire extinction in ships. And also the regulations and the related IMO fire test rules applied to products such as fire sep-arate walls and non-combustible materials for interior to prevent fire spread on the ship fire are summarized.

  • PDF

Properties of Foamed Concrete according to Dilution Concentrations of Animality Protein Foaming Agent (동물성 기포제의 희석농도에 따른 기포콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.77-78
    • /
    • 2019
  • Organic insulating materials can cause fatal toxic gases when burned, which can lead to human injury. As a combustible material, the risk of fire spreading is great. Therefore, there is a need for a study on the lightweight cured body for the non-combustible inorganic insulation to replace the flammable organic insulation. This study aims to examine the properties of lightweight foamed concrete according to the dilution concentration of animal foaming agent which forms a closed void when foaming as a part of the experiment to examine the utility of the lightweight foamed concrete as an insulating material. Bubbles occupy a large volume of lightweight foam concrete and have a great influence on the properties. Therefore, the stability of the bubble is very important, and as a result of the experiment, it is determined that 3% of the smallest vesicles are prepared at the proper dilution concentration.

  • PDF

A Study on the Analysis of Fire Mechanisms in Electronic Products due to Failure and Malfunction of Thermostats Through Fire Cases and Reproduction Experiments (화재사례 및 재현실험을 통한 온도조절장치 고장 및 오동작으로 인한 전자제품 화재 메커니즘 분석)

  • Jeong-il Lee;Jong-Hwa Im
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.