• Title/Summary/Keyword: non-Gaussian signals

Search Result 48, Processing Time 0.031 seconds

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

Classification Model of Chronic Gastritis According to The Feature Extraction Method of Radial Artery Pulse Signal (맥파의 특징점 추출 방법에 따른 만성위염 판별 모형)

  • Choi, Sang-Ho;Shin, Ki-Young;Kim, Jeauk;Jin, Seung-Oh;Lee, Tea-Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.185-194
    • /
    • 2014
  • One in every 10 persons suffer from chronic gastritis in Korea. Endoscopy is most commonly used to diagnose the chronic gastritis. Endoscopic diagnosis is precise but it is accompanied with pain and high cost. According to pulse diagnosis in Traditional East Asian Medicine, health problems in stomach can be diagnosed with radial pulse signals in 'Guan' location in the right wrist, which are non-invasive and cost-effective. In this study, we developed a classification model of chronic gastritis using pulse signals in right 'Guan' location. We used both linear discrimination method and logistic regression model with respect to pulse features obtained with a peak-valley detection algorithm and a Gaussian model. As a result, we obtained sensitivity ranged between 77%~89% and specificity ranged between 72%~83% depending on classification models and feature extraction methods, and the average classification rates were approximately 80%, irrespective of the models. Specifically, the Gaussian model were featured by superior sensitivities (89.1% and 87.5%) while the peak-valley detection method showed superior specificities (82.8% and 81.3%), and the average classification rate (sensitivity + specificity) of the Gaussian model was 80.9% which was 1.2% ahead of the peak-valley method. In conclusion, we obtained a reliable classification model for the chronic gastritis based on the radial pulse feature extraction algorithms, where the Gaussian model was featured by outperformed sensitivity and the peak-valley method was featured by outperformed specificity.

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm (DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정)

  • 장덕홍;박홍배;정문섭;김인수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter (스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF

Multi-dimensional extreme aerodynamic load calculation in super-large cooling towers under typical four-tower arrangements

  • Ke, Shitang;Wang, Hao;Ge, Yaojun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.101-129
    • /
    • 2017
  • Local transient extreme wind loads caused by group tower-related interference are among the major reasons that lead to wind-induced damage of super-large cooling towers. Four-tower arrangements are the most commonly seen patterns for super-large cooling towers. We considered five typical four-tower arrangements in engineering practice, namely, single row, rectangular, rhombic, L-shaped, and oblique L-shaped. Wind tunnel tests for rigid body were performed to determine the influence of different arrangements on static and dynamic wind loads and extreme interference effect. The most unfavorable working conditions (i.e., the largest overall wind loads) were determined based on the overall aerodynamic coefficient under different four-tower arrangements. Then we calculated the one-, two- and three-dimensional aerodynamic loads under different four-tower arrangements. Statistical analyses were performed on the wind pressure signals in the amplitude and time domains under the most unfavorable working conditions. On this basis, the non-Gaussian distribution characteristics of aerodynamic loads on the surface of the cooling towers under different four-tower arrangements were analyzed. We applied the Sadek-Simiu procedure to the calculation of two- and three-dimensional aerodynamic loads in the cooling towers under the four-tower arrangements, and the extreme wind load distribution patterns under the most unfavorable working conditions in each arrangement were compared. Finally, we proposed a uniform equation for fitting the extreme wind loads under the four-tower arrangements; the accuracy and reliability of the equation were verified. Our research findings will contribute to the optimization of the four-tower arrangements and the determination of extreme wind loads of super-large cooling towers.

SIMULATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION FIELDS FOR AMiBA EXPERIMENT

  • PARK CHAN-GYUNG;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.67-73
    • /
    • 2002
  • We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ACDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

Enhancement of Convergence Speed of Adaptive Algorithm using Wavelet Packet Transform (웨이브렛 패킷 변환을 이용한 적응알고리듬의 수렴속도 향상)

  • 박서용;김대성
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.127-138
    • /
    • 1999
  • The wavelet transform is widely used in signal processing application. In this paper, a wavelet domain adaptive algorithm(WPTNLMS) is derived and its performances are evaluated in non-stationary environment. Where the input signals are decomposed by the wavelet packet transform for the multi-resolution adaptive processing. And the NLMS is used as an adaptive algorithm in wavelet domain. The proposed technique is applied to noise cancellation of the Doppler signal which is added with white Gaussian noise.

  • PDF

Improvement of Tracking Performance of Particle Filter in Low Frame Rate Video (낮은 프레임률 영상에서 파티클 필터의 추적 성능 개선)

  • Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Particle filter algorithm has been proven very successful for non-linear and non-Gaussian estimation problem and thus it has been widely used for object tracking for video signals. If the object moves significantly, particle filter needs very large number of particles to track object and this results high computational cost. In this paper, modified particle filter by adopting motion vector is proposed for tracking vehicle in low frame rate(LPR) video input, which the object moving significantly and randomly between consecutive frames. In the proposed algorithm, motion vector is applied in selection and observe step. The experimental result shows that the proposed particle filter can track vehicle successfully in the case when previous one fails. And it also shows the propose method increases the precision of tracking.