• Title/Summary/Keyword: nominal strength

Search Result 285, Processing Time 0.028 seconds

Effect of Welding Parameters on Wire Seam Weldability of Tin Coated Steels for Small Containers (용접 조건이 소형 용기용 Sn 도금 강재의 와이어 심 용접성에 미치는 영향)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.74-83
    • /
    • 1997
  • Effect of welding parameters such as current, speed and electrode pressure on the weld quality of tin coated steels for small containers was discussed in this paper. Welding was performed with low frequency wire seam welding system which was loaded with 1.5mm in diameter copper wire electrode. The welding parameters were monitored at the position close to the welding spot so as to minimize the instrumentation error, and the signals were stored into a digital data acquisition system before analysis. Results showed that critical current for sufficient nugget size increased as the base material thickness increased, while the width of the optimum welding range was reduced. The acceptable welding condition derived from this study was found to be effective within the thickness range of $\pm$10% of the nominal (0.25mm) thickness. Tin coating layer was proved not to affect seriously on the weld quality, i.e. strength and formability, since consumable wire electrode was used in this process. Test results also demonstrated that the welding current was thought to be the most effective parameter to form an acceptable weld, while welding speed or electrode pressure exerted less effect on the nugget formation. However, these two parameters played an important role because the former was related to the nugget overlap interval, and the latter, to the formation of expulsion during welding.

  • PDF

A Study on the Evaluation of Fatigue Strength of Welded Lap Joint with Element Stress Approach (요소 응력을 이용한 겹침 용접부의 피로 강도 평가에 관한 연구)

  • Kim, Hyeon-Su;Shin, Sang-Beom;Kim, Myung-Hyun;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2014
  • The purpose of this study is to evaluate the applicability of the element stress to establish S-N design curve for the welded lap joint with thin plates below 2mm thickness. In order to do it, the extensive fatigue tests of the welded lap joints with INVAR alloy were performed. With the results, the deign S-N curves for the lap-weld were established by using the reference stresses such as the nominal stress range at the weld throat area, hot spot stress range and element stress range, and compared with regard to the standard deviation. The standard deviation of S-N curves with element stress range was less than that of S-N curves with other reference stresses. In addition, FEA results show the amount of the element stress is less sensitive to mesh size. Based on the results, it can be concluded that the element stress is to be used as the reference stress for the design S-N curves of the welded lap joint.

Estimation Fatigue Life of Weldments by Notch Stress Approaches (노치응력법에 의한 용접 연결부 피로수명 추정에 관한 연구)

  • Yang, Park-Dal-Chi;Song, Joon-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.47-51
    • /
    • 2011
  • This paper analyzes the fatigue-life of welded joints using the notch stress approach. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. The actual bead shape is complex and 3-dimensional. It may also greatly influence the fatigue strength. In this study, the welded shape was modeled using a 3D-scanner. The critical distance method was adopted in the evaluation of the fatigue effective notch stress for the weldments. Fatigue life tests were performed to verify the present method of fatigue life estimation for two types of welded plates with longitudinal attachments. The estimated results of the present methods were applied to the results of the experiment. The results of the analysis showed that the scatter of fatigue-life for the experimental data expressed in the nominal stress was significantly reduced by applying the effective fatigue stress of the present study.

Low Pressure Firing Tests of 75-tonf-Class Channel Cooling Thrust Chamber (75톤급 채널냉각 연소기 저압연소시험)

  • Lim, Byoung-Jik;Han, Yeoung-Min;Kim, Jong-Gyu;Seo, Seong-Hyeon;Ahn, Kyu-Bok;Kim, Mun-Ki;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.71-74
    • /
    • 2010
  • Using the technology demonstration model of 75-tonf-class combustor which is expected to be used to the rocket engine of a korean space launch vehicle, 2 times of firing tests were carried out. Firing tests were done at 50% of the nominal flow rate because of incapability of the test facility and limit of the test bed strength. Through the low pressure firing tests of 75-tonf-class channel cooling thrust chamber, reliability and stability at the ignition and combustion phases were confirmed. Additionally it was foreseen that the 75-tonf-class thrust chamber would satisfy the performance requirements.

  • PDF

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Eccentric Axial Load Test for Concrete-Filled Tubular Columns Encased with Precast Concrete (프리캐스트 콘크리트에 의해 피복된 콘크리트충전 강관기둥의 편심압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Kim, Sung Bae;Park, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2014
  • In this paper, concrete-filled steel tubular columns encased with precast reinforced concrete were studied. Four eccentrically loaded columns and a concentrically loaded column were tested to investigate the axial load-carrying capacity. The test parameters were the use of fiber reinforcement for cover concrete, eccentricity, column length, and lateral reinforcement. The maximum axial loads of the specimens agreed with the nominal strengths predicted by KBC 2009. However, in some specimens, the load carrying capacity quickly decreased after the peak strength due to spalling of the cover concrete.

An Experimental Study on the Performance of One-Way Slab Using Unbonded Post-Tensioned Anchorage for Single Tendon (비부착식 단일 강연선용 원형 정착구의 일방향 슬래브 적용에 관한 실험적 연구)

  • Kim, Min Sook;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • In this study, the static load test and the load transfer test were carried out to evaluate the structural performance of the circular anchorage proposed by the previous study. Specimens were fabricated according to KCI-PS101 and ETAG 013. As a result of the static load test, it was verified that the displacement of the wedge and the strand was kept constant when the tensile force of 80% of the nominal strength of the strand was applied. In the load transfer test, it was confirmed that all the specimens satisfied the stabilization formula of KCI-PS101 and ETAG 013. Post-tensioned one-way slab with circular anchorage were fabricated to evaluate the flexural behavior. All specimens exhibited the same flexural behavior and maximum load. However, the specimen with circular anchorage were advantageous than the rectangular anchorage one in terms of crack control of the anchorage zone.

Effect of cement as mineral filler on the performance development of emulsified asphalt concrete

  • Liu, Baoju;Wu, Xiang;Shi, Jinyan;Wu, Xiaolong;Jiang, Junyi;Qin, Jiali
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.515-526
    • /
    • 2020
  • Cold-mixed asphalt mixture is a widely recommended asphalt pavement materials with potentially economic and environmental benefits. Due to the reduction of natural non-renewable mineral resources, powder minerals with similar properties are considered as new mineral fillers in asphalt mixtures. This study explored the feasibility of using cement to replace natural limestone powder (LP) in emulsified asphalt concrete modified by styrene-butadiene styrene copolymer. The experimental tests, including compressive strength, Marshall stability as well as moisture susceptibility test, were used to investigate the mechanical properties, the Marshall stability, flow value, as well as the moisture damage. In addition, the influence of material composition on the performance of asphalt concrete is explained by the microstructure evolution of the pore structure, the interface transition zone (ITZ), and the micromorphology. Due to mineralogical reactivity of cement, its replacement part of LP improved the mechanical properties, Marshall stability, but it will reduce the moisture susceptibility and flow value. This is because with the increase of the cement substitution rate, the pore structure of the asphalt concrete is refined, the width of ITZ becomes smaller, and the microstructure is more compact. In addition, asphalt concrete with a larger nominal particle size (AC-16) has relatively better performance.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement (전단 보강되지 않은 실규모 순환 잔골재 콘크리트 보의 전단성능)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • This paper presents the test results on the shear performance of large-size reinforced concrete beams using recycled fine aggregate to evaluate its applicability to structural concrete. The performance of these beams is compared to that of similar beams casted with natural coarse and fine aggregates. All of the beam specimens without shear reinforcement had $400mm{\times}600mm$ rectangular cross section and a shear span ratio (a/d) of 5.0. Five concrete mixtures with different replacement levels of recycled fine aggregates (0, 30, 60, 70 and 100%) were used to obtain a nominal concrete compressive strength of 28MPa. The test results of load-deflection curve, shear deformation, diagonal cracking load, crack pattern, ultimate shear strength, and failure mode are examined and compared. In addition, code and empirical equations from KCI, JSCE, CSA, Zsutty, and MCFT were considered to evaluate the applicability of these equations for predicting shear strength of reinforced concrete beam with recycled fine aggregate. The results showed that the overall shear behavior of reinforced concrete beams incorporating less than 60% recycled fine aggregate was comparable with that of conventional concrete beam. The MCFT gave good prediction and other code equations were conservative in predicting the shear strength of the tested beams. The beam specimens with replacement of 70 and 100% of natural fine aggregates by recycled fine aggregates showed different failure mode than other tested beams.