• 제목/요약/키워드: noisy speech recognition

검색결과 228건 처리시간 0.027초

SNR 매핑을 이용한 환경적응 기반 음성인식 (Speech Recognition based on Environment Adaptation using SNR Mapping)

  • 정용주
    • 한국전자통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.543-548
    • /
    • 2014
  • 다 모델 기반의 음성인식기는 음성인식에서 매우 성공적임이 알려져 있다. 그것은 다양한 신호-대-잡음비(SNR)와 잡음종류에 해당하는 다수의 HMM을 사용함으로서 선택된 음향모델이 인식잡음음성에 매우 근접한 일치성을 가질 수 있기 때문이다. 그러나 실제 사용시에 HMM의 개수가 제한됨에 따라서 음향모델의 불일치는 여전히 문제로 남아 있다. 본 논문에서는 인식잡음음성과 HMM 간의 SNR 불일치를 줄이고자 이들 간의 최적의 SNR 매핑 (mapping)을 실험적으로 결정하였다. 인식잡음음성으로 부터 추정된 SNR 값을 사용하는 대신 제안된 SNR 매핑을 사용함으로서 향상된 인식결과를 얻을 수 있었다. 다 모델 기반인식기에 제안된 방법을 적용하여 Aurora 2 데이터베이스에 대해서 인식 실험한 결과 기존의 MTR 이나 다 모델 기반 음성인식기에 비해서 6.3%와 9.4%의 상대적 단어 오인식율 감소를 이룰 수 있었다.

잡음 환경에서의 음성인식을 위한 온라인 빔포밍과 스펙트럼 감산의 결합 (Combining deep learning-based online beamforming with spectral subtraction for speech recognition in noisy environments)

  • 윤성욱;권오욱
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.439-451
    • /
    • 2021
  • 본 논문에서는 실제 환경에서의 연속 음성 강화를 위한 딥러닝 기반 온라인 빔포밍 알고리듬과 스펙트럼 감산을 결합한 빔포머를 제안한다. 기존 빔포밍 시스템은 컴퓨터에서 음성과 잡음을 완전히 겹친 방식으로 혼합하여 생성된 사전 분할 오디오 신호를 사용하여 대부분 평가되었다. 하지만 실제 환경에서는 시간 축으로 음성 발화가 띄엄띄엄 발성되기 때문에, 음성이 없는 잡음 신호가 시스템에 입력되면 기존 빔포밍 알고리듬의 성능이 저하된다. 이러한 효과를 경감하기 위하여, 심층 학습 기반 온라인 빔포밍 알고리듬과 스펙트럼 감산을 결합하였다. 잡음 환경에서 온라인 빔포밍 알고리듬을 평가하기 위해 연속 음성 강화 세트를 구성하였다. 평가 세트는 CHiME3 평가 세트에서 추출한 음성 발화와 CHiME3 배경 잡음 및 MUSDB에서 추출한 연속 재생되는 배경음악을 혼합하여 구성되었다. 음성인식기로는 Kaldi 기반 툴킷 및 구글 웹 음성인식기를 사용하였다. 제안한 온라인 빔포밍 알고리듬 과 스펙트럼 감산이 베이스라인 빔포밍 알고리듬에 비해 성능 향상을 보임을 확인하였다.

DSP를 이용한 자동차 소음에 강인한 음성인식기 구현 (Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP)

  • 정익주
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF

감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.209-214
    • /
    • 2013
  • 음성 인식 시스템에서는 인식 성능 향상을 위한 방법으로 인간의 청취 능력을 인식 시스템에 접목하였으며 잡음 환경에서 음성 신호와 잡음을 분리하여 원하는 음성 신호만을 선택할 수 있도록 구성되었다. 하지만 실용적 측면에서 음성 인식 시스템의 성능 저하 요인으로 인식 환경 변화에 따른 잡음으로 인한 음성 검출이 정확하지 못하여 일어나는 것과 학습 모델이 일치하지 않는 것을 들 수 있다. 따라서 본 논문에서는 음성 인식 향상을 위해 감마톤을 이용하여 특징을 추출하고 음향 모델을 이용한 학습 모델을 제안하였다. 제안한 방법은 청각 장면 분석을 이용한 특징을 추출을 통해 인간의 청각 인지 능력을 반영하였으며 인식을 위한 학습 모델 과정에서 음향 모델을 이용하여 인식 성능을 향상시켰다. 성능 평가를 위해 잡음 환경의 -10dB, -5dB 신호에서 잡음 제거를 수행하여 SNR을 측정한 결과 3.12dB, 2.04dB의 성능이 향상됨을 확인하였다.

스펙트럼사상학습을 이용한 잡음환경에서의 한국어숫자음인식 (Korean Digit Recognition Under Noise Environment Using Spectral Mapping Training)

  • 이기영
    • 한국음향학회지
    • /
    • 제13권3호
    • /
    • pp.25-32
    • /
    • 1994
  • 본 연구에서는 정적지도적응알고리즘을 기초로 한 스펙트럼사상학습을 이용하여 잡음환경에서의 한국어숫자음인식방법을 제시하였다. 제시한 인식방법에서 잡음이 섞인 음성스펙트럼 공간을 잡음이 없는 음성스펙트럼 공간으로 사상한 결과, 잡음이 섞인 음성스펙트럼의 왜곡이 개선되어 잡음처리를 행하지 않은 기존의 VQ(vector quantizaton)와 DTW(dynamic time warping)를 이용한 방법보다 높은 인식율을 얻을 수 있었으며 , 0 dB의 SNR 레벨에서도 기존방법의 인식율을 10배 정도 향상시키므로써, 스펙트럼사상학습이 잡음환경의 음성에 대한 인식성능을 향상시킬 수 있는 방법임을 확인하였다.

  • PDF

잡음 환경에서의 인식 거부 성능 향상을 위한 신뢰 척도 (Confidence Measure for Utterance Verification in Noisy Environments)

  • 박정식;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 추계학술대회 발표논문집
    • /
    • pp.3-6
    • /
    • 2006
  • This paper proposes a confidence measure employed for utterance verification in noisy environments. Most of conventional approaches estimate the proper threshold of confidence measure and apply the value to utterance rejection in recognition process. As such, their performance may degrade for noisy speech since the threshold can be changed in noisy environments. This paper presents further robust confidence measure based on the multi-pass confidence measure. The isolated word recognition based experimental results demonstrate that the proposed method outperforms conventional approaches as utterance verifier.

  • PDF

잡음 환경에서의 음성 검출 알고리즘 비교 연구 (A Comparative Study of Voice Activity Detection Algorithms in Adverse Environments)

  • 양경철;육동석
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2006년도 춘계 학술대회 발표논문집
    • /
    • pp.45-48
    • /
    • 2006
  • As the speech recognition systems are used in many emerging applications, robust performance of speech recognition systems under extremely noisy conditions become more important. The voice activity detection (VAD) has been taken into account as one of the important factors for robust speech recognition. In this paper, we investigate conventional VAD algorithms and analyze the weak and the strong points of each algorithm.

  • PDF

청각 및 시가 정보를 이용한 강인한 음성 인식 시스템의 구현 (Constructing a Noise-Robust Speech Recognition System using Acoustic and Visual Information)

  • 이종석;박철훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.719-725
    • /
    • 2007
  • In this paper, we present an audio-visual speech recognition system for noise-robust human-computer interaction. Unlike usual speech recognition systems, our system utilizes the visual signal containing speakers' lip movements along with the acoustic signal to obtain robust speech recognition performance against environmental noise. The procedures of acoustic speech processing, visual speech processing, and audio-visual integration are described in detail. Experimental results demonstrate the constructed system significantly enhances the recognition performance in noisy circumstances compared to acoustic-only recognition by using the complementary nature of the two signals.

Integrated Visual and Speech Parameters in Korean Numeral Speech Recognition

  • Lee, Sang-won;Park, In-Jung;Lee, Chun-Woo;Kim, Hyung-Bae
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.685-688
    • /
    • 2000
  • In this paper, we used image information for the enhancement of Korean numeral speech recognition. First, a noisy environment was made by Gaussian generator at each 10 dB level and the generated signal was added to original Korean numeral speech. And then, the speech was analyzed to recognize Korean numeral speech. Speech through microphone was pre-emphasized with 0.95, Hamming window, autocorrelation and LPC analysis was used. Second, the image obtained by camera, was converted to gray level, autocorrelated, and analyzed using LPC algorithm, to which was applied in speech analysis, Finally, the Korean numerial speech recognition with image information was more ehnanced than speech-only, especially in ‘3’, ‘5’and ‘9’. As the same LPC algorithm and simple image management was used, additional computation a1gorithm like a filtering was not used, a total speech recognition algorithm was made simple.

  • PDF

잡음환경에서 음성인식 성능향상을 위한 바이너리 마스크를 이용한 스펙트럼 향상 방법 (Method for Spectral Enhancement by Binary Mask for Speech Recognition Enhancement Under Noise Environment)

  • 최갑근;김순협
    • 한국음향학회지
    • /
    • 제29권7호
    • /
    • pp.468-474
    • /
    • 2010
  • 음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널잡음에 의한 왜곡이다. 일반적으로 배경잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 받게 한다. DSR (Distributed Speech Recognition) 기반의 음성인식 역시 이와 같은 문제로 성능 향상에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 다양한 잡음제거 알고리듬이 사용되고 있으나 낮은 SNR환경에서 부정확한 잡음추정으로 발생하는 스펙트럼 손상과 잔존 잡음은 음성인식기의 인식환경과 학습 환경의 불일치를 만들게 되어 인식률을 저하시키는 원인이 된다. 본 논문에서는 이와 같은 문제를 해결하기 위해 잡음제거 알고리듬으로 MMSE-STSA 방법을 사용하였고 손상된 스펙트럼을 보상하기 위해 Ideal Binary Mask를 이용하였다. 잡음환경 (SNR 15 ~ 0 dB)에 따른 실험결과 제안된 방법을 사용했을 때 향상된 스펙트럼을 얻을 수 있었고 향상된 인식성능을 확인했다.