• 제목/요약/키워드: noisy speech recognition

검색결과 228건 처리시간 0.022초

자동차 환경에서 피치검출을 이용한 음성인식 연구 (A study on speech recognition using pitch detection in a car-noisy environment)

  • 이정기;유봉근;김학진;김순협
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.97-100
    • /
    • 1999
  • 본 논문은 자동차의 편의성 및 안전성의 동시 확보를 위하여, 보조적 스위치의 조작없이 상시 음성의 입$\cdot$출력이 가능하도록 하였고, 남성과 여성을 구별하기 위하여 피치검출법을 사용하여 속도별로 구분하였다. 또한, band pass filter를 이용하여 자동으로 잡음하에서 정확하게 음성추간 검출(End Point Detection)을 하게 하였다. Reference Pattern은 DMS(Dynaminc Multi-Section)[1]모델을 사용하려고, 음성의 특징 파라미터와 인식 알고리즘은 PLP 13차와 One Stage Dynamic Programming(OSDP)를 사용하였다. 시내주행중인 자동차 환경에서 자주 사용되는 차량제어 명령어 30단어를 가지고 실험한 결과 40-80km에서 화자독립 남성 $96\%$, 여성 $94.4\%$ 화자종속일 때 남성 $97\%$, 여성 $95\%$의 인식률을 얻을수 있었고 남성과 여성을 구분하므로 써 인식률을 향상 시켰다.

  • PDF

전처리 기법에 따른 잡음음성의 인식성능 비교 (Comparison of Recognition Per formance of Noisy Speech Depend ing on Preprocessing Methods)

  • 손종목;이용주;배건성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.31-34
    • /
    • 2000
  • 본 연구에서는 부가잡음에 의한 음성신호의 왜곡에 대해 다양한 음성개선 기법을 전처리기로 도입하여 HMM(Hidden Markov Model)에 기반 한 음성인식 시스템의 인식성능을 평가하였다. 음성개선 기법으로는 MMSE(Minimun Mean Square Error) STSA(Short-Time Spectral Amplitude Estimator) 기법과 웨이브렛 영역에서의 UWD(Undecimated Wavelet Denoising), CWD(Conventional Wavelet Denoising) 기법을 적용하였다. 잡음이 없는 데이터로 훈련한 음성인식시스템에 잡음음성을 입력할 때 각 음성개선기법을 전처리기로 사용하여 신호대잡음비(Signal to Noise Ratio)에 따른 인식 성능을 비교하였다.

  • PDF

잡음환경 및 어휘독립 환경에서의 가변어휘 음성인식기의 성능 분석 (Performance Evaluation of the Variable Vocabulary Speech Recognition System in the Noisy and Vocabulary-Independent Environments)

  • 이승훈
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.56-59
    • /
    • 1998
  • POW 3848 DB 및 SNR 이 크게 다른 2 종류의 PC168 DB를 대상으로 가변어휘 음성인식 시스템을 이용하여 훈련 및 성능 평가 실험을 수행한 내용에 대해서 기술하고 있다. 실험의 목적은 위의 3종류의 DB를 조합하여 얻은 DB 환경하에서 인식기를 훈련시키면서, DB 의 조합 및 훈련방법에 따른 인식기의 성능과의 상관관계를 도출하고자 하였다. DB 의 조합은 POW DB 와 SNR 이 높은 PC DB , 및 3종류의 DB 모두로 구성하였다. 인식기는 40개의 음소로 구성된 문맥 독립형 SCHMM 모델이며, 각 음소당 3개의 상태로 이루어져 있다. 실험 결과, 대부분의 경우에서 ITERATION이 1.0인 경우에 최고 인식률을 나타내고 있으며, INTERATION 이 3.0 이상인 경우에는 항상 CASE 3의 실험방법이 우세한 결과를 나타내었다. 또한 CASE 1으로 훈련한 경우가 CASE 2 보다는 각각의 실험 DB 에 대해서 대체적으로 좋은 결과를 보였다.

  • PDF

히스토그램 처리방법을 이용한 시변 잡음환경에서의 음성인식 (Speech Recognition in Time-varying Noisy Environments using the Histogram Technique)

  • 권영욱;김형순
    • 한국음향학회지
    • /
    • 제17권3호
    • /
    • pp.47-51
    • /
    • 1998
  • 잡음 환경에서의 음성인식을 위해서는 일반적으로 전처리 과정에서 잡음의 스펙트 럼을 잘 추정할 필요가 있다. 본 논문에서는 시변잡음 환경에서 히스토그램 처리방법에 의 해 잡음의 스펙트럼을 추정하고 이를 제거하는 방법으로 스펙트럼 차감법을 사용하였다. 히 스토그램 처리방법은 음성/비음성 구간의 구분을 할 필요가 없으며 서서히 변화하는 잡음의 스펙트럼도 추정할 수 있다는 점에서 기존 방식에 비해 장점을 지닌다. 다양한 SNR 조건하 에서 시간에 따라 에너지, 그리고 주파수가 변화하는 유색 가우시안 잡음을 부가시킨 음성 에 대해, 화자독립 고립단어 인식실험을 수행하였다. 실험결과, 히스토그램 처리방법에 기반 을 둔 스펙트럼 차감법을 적용할 경우가 기존의 잡음 스펙트럼 추정방법에 비해 인식성능이 우수하였다.

  • PDF

잡음 환경에서의 복수 화자 음성인식 (Multi-Speaker Speech Recognition in Noisy Environments)

  • 오윤학;허호영;송명규;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.41-44
    • /
    • 2000
  • 본 논문에서는 잡음 환경에서 복수 화자 음성인식 시스템의 인식 성능 향상에 관한 실험을 하였다. 복수화자 음성인식 방식은 훈련에 참여한 복수의 사용자에 대한 등록 단어 모델을 가지므로, 인식 단계에서 등록화자의 모든 단어 모델들을 테스트 음성과 비교하여 인식 단어를 결정한다 그러나, 이 경우 훈련 환경과 테스트 환경의 불일치에 기인한 인식 성능 저하가 등록 화자수가 많아짐에 따라 더욱 심해지는 문제가 발생한다. 본 논문에서는 이 문제의 해결을 위해 등록 화자들의 모든 단어 모델들을 테스트 음성과 비교하는 대신 화자인식 시스템을 사용해서 발성 화자와 유사한 후보 화자들의 단어 모델들에 대해서만 테스트 음성과 비교하는 방식을 적용함으로써 기존의 방법보다 높은 단어 인식 율을 얻을 수 있었다

  • PDF

변형된 이득함수를 이용한 잡음 환경에서의 음성인식 (Speech Recognition in Noisy Environments Using Modified Gain Function)

  • 진호성;이상호;홍재근
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.119-123
    • /
    • 2010
  • 본 논문에서는 2단계 잡음제거 방법의 이득함수를 이용한 고조파 복원 잡음제거 방법의 이득함수를 조정하여 기존의 방법보다 음성개선을 향상시켰고, 제안한 방법으로 개선된 음성을 음성인식 기술에 적용하였다. 본 논문에서는 기존 방법으로 음성개선 결과 묵음구간에서 음성구간으로 변화는 구간에서 이전 프레임의 추정된 음성신호로 스펙트럼의 이득함수가 구해져서 음성이 발생하는 구간에서 왜곡이 발생한다. 따라서 본 논문에서는 이러한 현상을 개선시키기 위해 2단계 잡음제거 방법의 이득함수를 추정된 a priori SNR과 비교하여 이득함수를 조정하고, 2단계 잡음제거 방법의 이득함수를 고조파 복원 방법의 이득함수와 비교하여 이득함수를 조정하여 음성을 개선하는 방법을 제안하였다. 그리고 음성인식을 위한 특징벡터 추출을 위해 제안한 방법으로 개선된 음성의 대수 에너지를 정규화 하는 대수 에너지 정규화 방법(Log Energy Normalization)을 음성인식 방법에 적용하였다.

  • PDF

Eigenspace-based MLLR에 기반한 고속 화자적응 및 환경보상 (Fast Speaker Adaptation and Environment Compensation Based on Eigenspace-based MLLR)

  • 송화전;김형순
    • 대한음성학회지:말소리
    • /
    • 제58호
    • /
    • pp.35-44
    • /
    • 2006
  • Maximum likelihood linear regression (MLLR) adaptation experiences severe performance degradation with very tiny amount of adaptation data. Eigenspace- based MLLR, as an alternative to MLLR for fast speaker adaptation, also has a weak point that it cannot deal with the mismatch between training and testing environments. In this paper, we propose a simultaneous fast speaker and environment adaptation based on eigenspace-based MLLR. We also extend the sub-stream based eigenspace-based MLLR to generalize the eigenspace-based MLLR with bias compensation. A vocabulary-independent word recognition experiment shows the proposed algorithm is superior to eigenspace-based MLLR regardless of the amount of adaptation data in diverse noisy environments. Especially, proposed sub-stream eigenspace-based MLLR with bias compensation yields 67% relative improvement with 10 adaptation words in 10 dB SNR environment, in comparison with the conventional eigenspace-based MLLR.

  • PDF

잡음 환경에서의 강인한 음성인식을 위한 문맥 정보와 음성인식 결과의 융합 (Merging Context Information and Recognition Result for Robust Speech Recognition in Noisy Environments)

  • 송원문;김은주;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.733-735
    • /
    • 2005
  • 최근 음성인식 분야 에서는 잡음 환경에서 좀 더 신뢰도 높은 음성 인식 결과물 얻기 위하여 인식 결과 도출 단계에서 여러 가지 정보를 융합 하는 방법이나 인식결과를 후처리 하여 새로운 결과를 얻어 내는 방법들이 연구 되고 있다. 본 논문에서는 개인 모바일 기기에서의 음성 인식 환경에서 사용자의 발화 패턴 정보를 가지는 문맥 정보를 활용함으로서 잡음 환경에서의 음성 정보 손실에 따른 인식률 하락을 보완하는 방법을 제안한다. 먼저 사용자의 기기 사용 로그나 발화 로그 정보로부터 특정 명령어들의 순차적 발화 패턴을 마이닝하여 문맥 정보를 구성한다. 이 후 음성 발화시에 인식기의 최종 인식 결과에 대한 신뢰도가 떨어진다고 판단될 때 앞서 얻어진 문맥 정보의 신뢰도를 인식기의 각 후보단어들의 인식률과 융합하여 새로운 인식 결과를 도출해 낸다. 이러한 과정에서 인식기 결과에 대한 신뢰성을 판단하는 기준을 실험을 통하여 결정 하였으며 신뢰성이 기준 이하일 경우의 융합 과정을 위하여 후보 단어 인식률과 문맥정보를 적절히 융합할 수 있는 방법을 제안한다.

  • PDF

포만트 밴드폭 정규화를 이용한 음성인식 (Speech Recognition Using Formant Bandwidth Normalization)

  • 홍종진;강석건;박군작;박규태
    • 한국통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.458-467
    • /
    • 1991
  • 본 논문에서는 기존의 선형예측기법의 문제점을 선형예측계수, ar필터의 POLE위치, 포만트-밴드폭의 관점에서 분석하고, 정문반사계수의 영향을 정도추정이론에 따라 분석했으며, 이러한 분석을 근거로 하여 포만트 밴드폭 정규화 방법을 보완하였다. 정분반사계수를 1로 변경하여 정문의 영향을 정규화되어 포만트가 최적으로 강조된 스펙트럽이 된다. 이 전형예측계수는 앞뒤로 대칭되면서, 표준편차가 정문반사계수를 변경시키지 않은 성형예측계수보다 증가하므로써, 음성부호화시에 bit rate을 50%로 줄일 수있으면서 정보의 양을 그대로 보존하고 있음을 알수 있었다. 이러한 포만트 밴드폭을 0으로 정규화하는 방법을 이용하여 한국어 5개 모음을 포만트에 의해서 소음환경에서 인식하기 위한 실험을 실시하여 96.7%의 인식율을 얻을 수 있었다.

  • PDF

동적 환경에서의 립리딩 인식성능저하 요인분석에 대한 연구 (A Study on Analysis of Variant Factors of Recognition Performance for Lip-reading at Dynamic Environment)

  • 신도성;김진영;이주헌
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.471-477
    • /
    • 2002
  • 최근 립리딩에 대한 연구는 음성인식방법에 있어서 부가적인 정보를 제공하여 잡음환경에서 견인한 음성 인식을 하거나 음성정보의 부가적인 특징벡터로 사용하기 위한 방법으로 연구되고 있다. 그러나 립리딩 연구의 대부분은 실험실 환경하의 제한된 결과로서, 실제 다양한 동적 환경에서의 견인성에 대해서는 연구된 바가 없다. 현재 우리는 입술정보만을 이용한 자동22단어 인식기를 만들었으며, 이미지 기반 립리딩의 성능은 53.54%의 성능을 가지고 있다. 본 연구에서는 기 구현된 립리딩 시스템을 기반으로 하여, 립리딩 성능이 환경 적인 변화에 대해서 얼마나 안정할 수 있는지, 그리고 립리딩의 인식성능 저하를 일으키는 주요 요인이 무엇인지에 대하여 연구하였다. 입술이미지의 동적 변이로서는 이동, 회전. 크기변화와 같은 공간적 변화와 빛에 의한 조명변화를 고려하였다. 실험용 데이터로는 영상변환에 의한 시뮬레이션 된 데이터와 동적 변화가 심한 자동차 환경에서 수집한 데이터를 사용하였다. 실험결과 입술의 공간 변화가 인식성능 저하의 한가지 요인으로 작용함을 발견하였다. 그러나 실제적으로 공간변화보다 더 심각한 성능저하 원인은 시간흐름에 따른 조명조건의 변화로써 70%이상의 왜곡이 발생했다. 따라서 신뢰할 수 있는 립리딩 시스템 구현을 위해서 고려해야 할 가장 큰 요인은 빛의 변화임을 발견할 수 있었다.