• Title/Summary/Keyword: noise pollution

Search Result 285, Processing Time 0.025 seconds

Current Methodologies for Environmental Impact Studies of Railroad-related Projects (철도사업 타당성조사의 환경편익 계량화)

  • Nam, Doo-Hee;Lee, Jin-Sun;Min, Bo-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1300-1305
    • /
    • 2011
  • Environmental Impact is getting more attention in many feasibility studies for railroad-related projects and research items. For sustainable growth and green transportation, the benefits typically used for feasibility studies in railway-related projects, are composed mostly of economic criterions which is not considering growing attention on changing paradigm. Based on the analysis of current methodologies, improvements in estimating environmental impact especially on noise and pollution are suggested.

  • PDF

Scheduling and Cost Estimation Simulation for Transportation and Installation of the Offshore Monopile Wind Turbines (모노파일 해상풍력발전의 이송과 설치를 위한 일정계획 및 비용분석 시뮬레이션)

  • Kim, Boram;Son, Myeong-Jo;Jang, Wangseok;Kim, Tae-Wan;Hong, Keyyong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.193-209
    • /
    • 2015
  • For reasons such as global warming, depletion of fossil fuels and the danger of nuclear energy the research and development of renewable energy is actively underway. Wind energy has advantages over another renewable energy in terms of location requirements, energy efficiency and reliability. Nowadays the research and development area is expanded to offshore because it can supply more wind reliability and free from noise pollution. In this study, the monopile offshore wind turbine transportation and installation (T&I) process are investigated. In addition, the schedule and cost for the process are estimated by discrete event simulation. For the simulation, simulation models for various means of T&I are developed. The optimum T&I execution plan with shortest duration and lowest cost can be found by using different mission start day and T&I means.

Application of the Risk-Based Analysis to EIA (환경영향평가에 있어 위해성분석 기법의 도입)

  • Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 1995
  • In generally speaking, the purpose of Environmental Impact Assessment(EIA) is to give the environment its due place in the decision-making process by clearly ealuating the environmental consequence of a proposed activity before action is taken. The introduction of conventional EIA is to be seen as an end product of a very long evolutionary process, starting with rudimentary but evolving pollution control measures for air, water, noise, land and chemicals, each governed by separate, and separately administered pieces of legislation. In EIA process, the measures of status, scoping, proposed mitigation and communication have not been very quantitative in their significancy. Of course, the determinations have uncertainity in the implications for significant impacts. To improve the determination of significant impacts, some more comprehensive methodologies of EIA has been proposed with the concepts of risk analysis in the proposed projects. The concepts of risk analysis has been introduced to the expression of human health impairment due to environmental pollutants since the early 1980's. The risk analysis being meant by the statistical significance of impact has a process quantitatively considering uncertainities and importances of ecological systems and human health as well. The process of risk analysis shows assessment, doseresponse in toxicity, exposure assessment and risk characterization. With the risk assessment, it could be suggested for the proper measurements against their anticipated risk in the EIA. This paper deals the priciples developing process and application of the risk-based analysis in EIA.

  • PDF

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

The Design of Parameters to Improve Actuating Performance in High Frequency Vibro-Hammer(HFVH) and the Study of Characteristic Propagation and Attenuation of Piling Vibration (초고주파 진동항타기의 구동 성능향상을 위한 파라미터 설계 및 항타진동의 전달과 감쇠특성에 관한 연구)

  • Jang, Tae-In;Park, Joon-Hyuk;Baek, Yoon-Su;Kim, Sung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.763-773
    • /
    • 2004
  • This paper suggests the 2 D.O.F mathematical model of the High Frequency Vibro-Hammer (HFVH), introduces an experimental method for measuring of the attenuation of piling vibration and proves what experiments are coincident with the equation of wave propagation. As vibratory installation of piles and casings has many economic merits in the construction field, most of all contractors prefer to vibratory pile driving method than the other. Compared to impact pile driving, vibratory installation has the advantage of reducing vibration or noise pollution and can drive piles under high frequency. Experiments serve estimations of capabilities and limitations of the HFVH's excitation force and finding of sensitivity for important soil resistance parameters. Also, we discuss the HFVH that can drive with three kinds of input waves (triangular, sine and square wave) and propose the design of parameters to improve actuating performance in it.

A Study of the PV System for Optimum Design Methods With Loss Parameter Compensation

  • Lee, Kang-Yeon;Choi, Moon-Han;Choi, Youn-Ok;Joeng, Byeong-Ho;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.64-75
    • /
    • 2007
  • Photovoltaic systems utilize the infinite clean energy of the sun, without creating any air pollution or noise and mechanical vibration. A PV system operates without the need of fuel, rotation surfaces, high temperatures or high pressures. It is therefore to do maintain and simple to install as well as having a long life cycle. The global market for PV systems continues to grow rapidly by 30[%] per year. This paper suggests a new design method for the PV system installation that will allow to the improvement of system efficiency. This method is in accordance with the loss parameter compensation method designed for the PV systems and investigated through simulation and practical experimentation. It was applied to an interconnected 10[kW] grid PV system and was demonstrated in the field. Features such as solar array, PCS, system efficiency, performance and stability were considered. Through the proposed optimal parameter design method, the features of the system were studied, and the 10[kW] PV system was demonstrated and analyzed.

A Study on Logistics Cost Analysis for Autonomous Cargo Truck (무인화물차의 물류비용 분석에 관한 연구)

  • Kim, Hwan-Seong;Park, Jin-Soon;Jo, Min-Ji
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • By according to increase the research for autonomous vehicle in automobile industries, the efficient of autonomous cargo truck instead of conventional driver cargo truck will be analyzed in logistics areas. The inland transportation has been serious problem such as traffic accident, traffic congestion in downtown, air pollution, noise and etc. even if it have a great effect to logistics industries. Especially there have to be improved its transportation schedule and sleepy driving in night which induced heavy accident in highway. In this study, the effectiveness of autonomous cargo truck will be analysed by considering the logistics cost including social effects.

  • PDF

Comparison of fabrication cost of composite bipolar plates for PEM fuel cell: compression molding and machining (PEM 연료전지용 복합재 분리판의 제작비용 비교: 압축성형과 기계식 가공)

  • Lee, Hee-Sub;Chu, Won-Shik;Kang, Yun-Cheol;Kang, Hyuk-Jin;Ahn, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.105-108
    • /
    • 2006
  • The fuel cell is one of the promising environment-friendly energy sources for the next generation. The fuel cell provides good energy efficiency above 40% without pollution or noise. Different fuel cell types are usually distinguished by the kind of electrolyte. Among these, the proton exchange membrane fuel cell (PEMFC) has advantages of high power density. low operating temperature, relatively quick start-up, and rapid response to varying loads. The bipolar plate is a major component of the PEM fuel cell stack, and it takes a large portion of stack volume, weight and cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding and by machining. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity. Flow channels were fabricated by compression molding with design of experiments (DOE) to evaluate moldability. The cost for compression molding of graphite-composite bipolar plate was compared with machining cost to make the same bipolar plate.

  • PDF

Development of a Candidate Equipment for Ozone SRP and its Uncertainty Evaluation (오존 SRP의 제작과 측정 불확도 평가)

  • 정규백;우진춘;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.313-319
    • /
    • 2001
  • The development of ozone SRP (Standard Reference Photometer) designated as a G-7 project by the Korean Ministry of Environment began 1997 and is now nearly completed. With the completion of the ozone SRP we will not only acquire a qualification to participate in the international ozone calibration system but also enhance calibration credibility of ozone similarly to that of other ambient air pollution monitors. As the ozone SRP uses highly cleaned blank air that can be distinguished from general ozone analyzer, it is possible to reduce errors associated with the determination of ozone via elongation of the absorption length as long as 1 meter In addition, gas chopping method hat been adopted to cut down interference of other substances and time drift. Furthermore, the system has also been modified to minimize the strayed ultra-violet noise along the light path. In this paper, a new method for uncertainty evaluation has been introduced, which is guided by the ISO (International Standard Organization) GUM (Guide to the Expression of Uncertainty in Measurement) through assessments of the uncertainty type B (that was impossible to estimate before) as well as the uncertainty type A (based on statistics).

  • PDF

On the Blasting Technology Develppment of Korea (한국의 폭파 기술 발전)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.13 no.4
    • /
    • pp.5-27
    • /
    • 1995
  • Korea-America tungsten treaty is not only Earnning Us Dollar but also it was turnning point of tunnelling technology development such as a burn cut. Because 10th of specialist worked at Sangdong mine under treaty. The first of all, Experimental blasting pattern for single free face carried out. As a result it has brought the burden and $charge/m^3$ and also space distance. After the center holes are blasted. Remain of the works was the implementation of bench cut against the openning to make the full sectional are required. $Ca=\frac{A}{SW}$ where as A =ndi=m activated area S = Peripheral length of Charged room Ca = Rock Coefficient di=Holes diameter Later in 1980, The Oynaite Explosive is Replaced into Emulsion & Milli-Second Delay Electric Cap. Seqential Blasting machine were Applied in the Site. The Subway Tunnelling have been worked so Carefully for Vibration and Noise to near Shopping and housing area. We carried out Empirical formula to solve city Envoirement pollution as follow For Granite: $V=KW^{0.57}D^{-1.75}$ For Granite : $V=KW^{0.5}D^{-1.5}$ V=PPV(cm/sec) K=Coefficency D=Distance(m) W=Amount of power/delay(kg)

  • PDF