• Title/Summary/Keyword: noise performance

Search Result 7,928, Processing Time 0.036 seconds

Performance Analysis of Convolution coded 16 QAM Signal with Maximum Ratio Combining Diversity in Rician Fading and Impulsive Noise Environments (라이시안 페이딩과 임펄스 잡음이 존재하는 환경에서 최대비 합성 다이버시티 기법과 길쌈 부호화 기법을 채용한 16 QAM 신호의 성능해석)

  • Kim, Kwang-Rak;Lee, Ho-Young;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.663-668
    • /
    • 2008
  • In this paper, we analyzed the error rate Performance of convolution coded 16 QAM signal in impulsive noise Environments. We used convolution rode and maximum ratio combining diversity for performance improvement. We analyzed the error rate performance of 16 QAM signal in implusive noise environments compared with gaussian noise environments. As a result of analysis, there is a BER segment where the efficiency of system does not improve until which limit to raise a signal power potential from impulsive noise environment when the signal power potential which goes over this limit is supplied, BER efficiency improve much more.

  • PDF

Blind Algorithms using a Random-Symbol Set under Biased Impulsive Noise (바이어스 된 충격성 잡음 하에서 랜덤 심볼 열을 이용한 블라인드 알고리듬)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1951-1956
    • /
    • 2013
  • Distribution-matching type algorithms based on a set of symbols generated in random order provide a limited performance under biased impulsive noise since the performance criterion for the algorithms has no variables for biased signal. For the immunity against biased impulsive noise, we propose, in this paper, a modified performance criterion and derived related blind algorithms based on augmented filter structures and the distribution-matching method using a set of random symbols. From the simulation results, the proposed algorithm based on the proposed criterion yielded superior convergence performance undisturbed by the strong biased impulsive noise.

Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System (자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

Intake Noise Control of Diesel Power Plant using Combined Silencer (조합형 소음기를 이용한 육상발전용 디젤 엔진의 흡기 소음 제어)

  • Song, Keun-Bok;Joo, Won-Ho;Kim, Dong-Hae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.861-866
    • /
    • 2012
  • Turbo-charger noise radiated from air intake part is one of the most important noise sources in diesel power plant. In this paper, intake noise control of the diesel power plant was studied using parallel baffle type silencer and concentric hole-cavity resonator simultaneously. Firstly, acoustical characteristics and attenuation performance for parallel baffle type silencer were investigated through theoretical approach and experimental method. Based on the results, optimal design of the parallel baffle silencer was suggested. Secondly, for reducing the low frequency noise contained in the intake noise, the concentric hole-type resonator was developed and the acoustic performance was verified from the test. By combining two types of silencers, it is expected that the overall insertion loss is about 50 dB. So, the combined silencer is very helpful in reducing the intake noise of diesel power plant.

  • PDF

Phase Noise Analysis of 2.4 GHz PLL using SPD (SPD를 이용한 2.4 GHz PLL의 위상잡음 분석)

  • Chae, Myeoung-ho;Kim, Jee-heung;Park, Beom-jun;Lee, Kyu-song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • In this paper, phase noise analysis result for 2.4 GHz PLL(phase locked loop) using SPD(sample phase detector) is proposed. It can be used for high performance frequency synthesizer's LO(local oscillator) to extend output frequency range or for LO of offset PLL to reduce a division rate or for clock signal of DDS(direct digital synthesizer). Before manufacturing, theoretical estimation of PLL's phase noise performance should be performed. In order to calculate phase noise of PLL using SPD, Leeson model is used for modeling phase noise of VCO(voltage controlled oscillator) and OCXO(ovened crystal oscillator). After theoretically analyzing phase noise of PLL, optimized loop filter bandwidth was determined. And then, phase noise of designed loop filter was calculated to find suitable OP-Amp. Also, the calculated result of phase noise was compared with the measured one. The measured phase noise of PLL was -130 dBc/Hz @ 10 kHz.

Noise evaluation method of DC motor according to change of load (부하에 따른 DC모터 소음 평가법)

  • Cha, Su-Ho;Shin, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.113-119
    • /
    • 2020
  • Motor noise is a major concern in order to improve perceptual feeling of car interior sound due to increased motor usage in passenger cars. The purpose of this study is to propose factors that can represent the acoustic performance of motor noise according to the change of load. To this end, at first, it is shown that power spectrum and total loudness are not fit for noise performance, and then, PNB, partial loudness related to the brush friction component, and PNR, partial loudness related to the torque ripple component are investigated as factors representing motor noise. The performance curve of motor noise using PNB and PNR is proposed to identify trends of motor noise according to the loads. The curve could be a guide for the noise control, the selection of motor, and the improvement of a system.

Determinant-based two-channel noise reduction method using speech presence probability (음성존재확률을 이용한 행렬식 기반 2채널 잡음제거기법)

  • Park, Jinuk;Hong, Jungpyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.649-655
    • /
    • 2022
  • In this paper, a determinant-based two-channel noise reduction method which utilizes speech presence probability (SPP) is proposed. The proposed method improves noise reduction performance from the conventional determinant-based two-channel noise reduction method in [7] by applying SPP to the Wiener filter gain. Consequently, the proposed method adaptively controls the amount of noise reduction depending on the SPP. For performance evaluation, the segmental signal-to-noise ratio (SNR), the perceptual evaluation of speech quality, the short time objective intelligibility, and the log spectral distance were measured in the simulated noisy environments considered various types of noise, reverberation, SNR, and the direction and number of noise sources. The experimental results presented that determinant-based methods outperform phase difference-based methods in most cases. In particular, the proposed method achieved the best noise reduction performance maintaining minimum speech distortion.

Design And Component Performance Analysis of RF System for W-CDMA Receiver (W-CDMA 수신기 RF System 설계 및 부품 성능 분석)

  • 지만구;이규헌;김학선
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.197-200
    • /
    • 2000
  • In this paper, The RF system of W-CDMA receiver is designed and the performance is analyzed. The linearity characteristic and the noise characteristic are presented in the performance. The linearity characteristic is analyzed by PN and IIP3. The noise characteristic is analyzed by NF. In addition, sweeping of the nonlinear components parameter affecting the linear performance is tested and the most maximal possible parameter to maintain the linear performance is introduced. The transceiver RF system of W-CDMA and cdma2000 is designed and presented adapting the nonlinear parameter introduced.

  • PDF

A study on enhancement of heterogeneous noisy image quality for the performance improvement of target detection and tracking (표적 탐지/추적 성능 향상을 위한 불균일 미세 잡음 영상 화질개선 연구)

  • Kim, Y.;Yoo, P.H.;Kim, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.923-936
    • /
    • 2014
  • Images can be contaminated with different types of noise, for different reasons. The neighborhood averaging and smoothing by image averaging are the classical image processing techniques for noise removal. The classical spatial filtering refers to the aggregate of pixels composing an image and operating directly on these pixels. To reduce or remove effectively noise in image sequences, it usually needs to use noise reduction filter based on space or time domain such as method of spatial or temporal filter. However, the method of spatial filter can generally cause that signals of objects as the target are also blurred. In this paper, we propose temporal filter using the piece-wise quadratic function model and enhancement algorithm of image quality for the performance improvement of target detection and tracking by heterogeneous noise reduction. Image tracking simulation that utilizes real IIR(Imaging Infra-Red) images is employed to evaluate the performance of the proposed image processing algorithm.

Design of a PLL Frequency Synthesizer for RSSI Applications Using Phase Noise Analysis (위상잡음 해석을 이용한 RSSI용 PLL 주파수합성기 설계)

  • Kim, Nam-Tae;Jeong, Jae-Han;Song, Han-Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.28-34
    • /
    • 2011
  • In this paper, a PLL frequency synthesizer for RSSI applications is designed by phase noise analysis. Required synthesizer performance is achieved by optimizing the noise performance of PLL components and a loop transfer function, since its phase noise, lock time, and spur suppression capability are determined by the performance of loop components and loop filter characteristics. As an application example, a PLL frequency synthesizer for RSSI applications, which operates at the frequency of 2.288GHz, is designed using the phase noise analysis. The validity of the design technique is proved by experiments.