• Title/Summary/Keyword: noise mechanism

Search Result 672, Processing Time 0.022 seconds

Adaptive Gaussian Mechanism Based on Expected Data Utility under Conditional Filtering Noise

  • Liu, Hai;Wu, Zhenqiang;Peng, Changgen;Tian, Feng;Lu, Laifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3497-3515
    • /
    • 2018
  • Differential privacy has broadly applied to statistical analysis, and its mainly objective is to ensure the tradeoff between the utility of noise data and the privacy preserving of individual's sensitive information. However, an individual could not achieve expected data utility under differential privacy mechanisms, since the adding noise is random. To this end, we proposed an adaptive Gaussian mechanism based on expected data utility under conditional filtering noise. Firstly, this paper made conditional filtering for Gaussian mechanism noise. Secondly, we defined the expected data utility according to the absolute value of relative error. Finally, we presented an adaptive Gaussian mechanism by combining expected data utility with conditional filtering noise. Through comparative analysis, the adaptive Gaussian mechanism satisfies differential privacy and achieves expected data utility for giving any privacy budget. Furthermore, our scheme is easy extend to engineering implementation.

A Study on Noise Source Identification for Loading Mechanism and Rattle noise about A/V System (차량용 A/V 시스템의 구동부 소음원과 래틀 소음원에 관한 연구)

  • 홍종호;강연준;이상호;이완우;이기석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.189-195
    • /
    • 2003
  • This paper represents an identification procedure for leading mechanism of a car A/V system which is composed of a DC motor and a set of plastic gears. In addition, we studied dominant noise source of rattle noise generated by external forced vibration as a car drives. we made a dynamometer to produce stationary operation on loading mechanism of A/V system because noise generated by actual loading mechanism is non-stationary signal. operating the dynamometer setup at various motor speeds, sound pressure spectra are measured and the results are analyzed. its dominant noise source is also identified by using a sound Intensity technique. we made use of multi-dimensional spectral analysis to rind a dominant rattle noise. this method is so useful to eliminate coherence between vibration sources and helps us obtain coherent output spectrum of individual vibration source which make a rattle noise.

  • PDF

Laser Phase Noise to Electronic Phase Noise Conversion in Optical Links Comprising Optical Resonators

  • Wang, Ziye;Yang, Chun;Xu, Weijie
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.395-399
    • /
    • 2018
  • This article investigates the mechanism of electronic signal phase noise degradation induced by laser phase noise in optical links comprising optical resonators. Through theoretical derivation, we find that the phase noise of the output electronic signal has the same spectral shape of optical intensity noise as the output of the optical resonator. We propose that the optical resonator transfers laser phase noise to light intensity fluctuation and then the intensity fluctuation is converted to electric phase noise through AM-PM conversion mechanism in the photodiode. An optical link comprising a Fabry-Perot resonator was constructed to verify the proposed mechanism. The experimental results agree with our theoretical prediction verifying that the supposition is correct.

Exciting Mechanism of Driveline Torsional Vibration and Vibration Reduction Methods (구동축 비틂진동 발생 Mechanism과 진동 감소방안)

  • 박보용;전형식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.163-167
    • /
    • 1990
  • 이 논문에서는 기구학적 특성을 고려, 크랭크 축과 프로펠러 축의 비틈 진동 의 주요 발생 Mechanism에 관하여 요약하고, 발생된 진동 및 소음을 감소시 키기 위한 방법을 저자의 연구수행 결과의 일부와 비교한다[1,2].

  • PDF

Functional Verification of Engineering Model of Non-explosive Shockless Holding and Release Mechanism Using Heating Wire Cutting Method (열선 절단 방식을 적용한 비폭발식 무충격 구속분리장치 EM의 기능검증)

  • Oh, Hyun-Ung;Jeon, Su-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.401-406
    • /
    • 2013
  • Non-explosive shockless holding and release mechanism for a nano class small satellite application has been proposed and investigated. The great advantages of the mechanism are a much lower shock level and larger constraint force than the conventional mechanism using pyro and the heating wire cutting mechanism which has been generally applied to the cube satellite program. To investigate the effectiveness of the mechanism design, EM mechanism was developed and tested to verify the basic function of the mechanism. The test results indicate that the proposed mechanism is well functioning as the mechanism design intends.

A Study on the Structure-borne Noise Reduction of Refrigerators Using Taguchi Method (다구찌 기법을 이용한 냉장고의 구조진동음 저감 방법에 관한 연구)

  • Son, Sol-San;Seo, Jea-Young;Lee, Boo-Youn;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.470-476
    • /
    • 2010
  • In this work, the mechanism of structure-borne noise resulting from vibration of a compressor for a refrigerator is experimentally analyzed and an effective method is proposed to reduce the noise. Firstly, the emission noise, when the compressor is turned on and off, is measured and analyzed to identify the generation mechanism of structure-borne noise. And the acceleration on the outer wall of the refrigerator is also analyzed to identify the distribution of vibration. Secondly, an effective design method to reduce the noise is suggested by using the finite element analysis and Taguchi method. Consequently an optimal design of the refrigerator, which has lower noise, is obtained and then its performance and validity are verified through the analysis and test.

Modeling impact force and transfer function for reducing relay impact noise (릴레이 충격 소음 저감을 위한 충격력과 전달함수 모델링)

  • Kim, Koo-Hwan;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.646-649
    • /
    • 2008
  • This study deals with mechanism of relay operation and modeling of transfer function between impact force and sound pressure due to the impact force in order to reduce relay noise. A collision between a moving-contact and fix-contact produces impact noise. Therefore impact noise of relay is determined by not only excitation force but also transfer function from impact force to noise. In this study, we find mechanism of relay operation, make impact force model and measure characteristic of relay noise. And also we find transfer function of relay noise.

  • PDF

An Experimental Study on Identification of Noise Generation Mechanism And Its Improvement in Gerotor Oil Pump (직동식 오일 펌프의 소음 발생 메커니즘 규명과 개선에 관한 실험적 연구)

  • Jung, Byung-Hwan;Jeong, Won-Jo;Shin, Dal-Heun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.121-127
    • /
    • 2012
  • Whine noise in engine oil pump system was issued in developing an engine. Generally, A noise of engine oil pump largely are classified two cases. The first one is a gearing noise caused by relative motion of inner rotor and outer rotor. The other is fluid pulsation noise caused by oil pressure fluctuation. The aim of the paper is to identify a noise mechanism in engine oil pump and improve its Noise. Also, it suggests to the guide line on the design of oil pump.

  • PDF

Noise Source Identification of a Car A/V System (차량탑재용 A/Y 시스템의 소음원 규명)

  • 홍종호;이상호;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.930-938
    • /
    • 2004
  • This paper presents the noise source identification of a car A/V system. There are two different kinds of noise sources noise generated by loading mechanism and rattle noise by externally forced vibration. A dynamometer has been made to produce stationary inertia to the loading mechanism of A/V system. Sound pressure spectra and sound intensity were measured by operating the dynamometer setup as various motor speeds, and the results were analyzed. A dominant rattle noise source about A/V system's components has been found by multi-dimensional spectral analysis. Residual spectrum method was applied for eliminating coherence between the vibration sources. In result, the dominant rattle noise source was identified by partial coherent output spectrum of individual vibration component.

A Study On The Robust Structure For Improvement of Front Insulator Noise Improvement (전륜 Insulator 이음 개선을 위한 강건 구조 방안 연구)

  • Lee, Sang Jong
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • Purpose: Clarify the cause of the noise by the front wheel strut insulator, which is located in close proximity to the driver's seat. Methods: The improvement mechanism was confirmed through failure analysis and reproduction test of the joint generation mechanism. In addition, the main factors were analyzed through principal test. Results: This paper describes the mechanism of occurrence of noise due to deterioration and hardness increase of rubber, deformation on severe road surface, foreign matter and water inflow in cold weather. Conclusion: We found that the insulator and body deformation can be minimized without increasing the thickness of the body and the insulator and reinforcing the body by dispersing the input load by applying load distribution structure instead of the local forming structure of the insulator in the insulator robust structure.