• Title/Summary/Keyword: noise in image data

Search Result 754, Processing Time 0.031 seconds

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

An Method for Inferring Fine Dust Concentration Using CCTV (CCTV를 이용한 미세먼지 농도 유추 방법)

  • Hong, Sunwon;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1234-1239
    • /
    • 2019
  • This paper proposes a method for measuring fine dust concentration through digital processing of images captured by only existing CCTVs without additional equipment. This image processing algorithm consists of noise reduction, edge sharpening, ROI setting, edge strength calculation, and correction through HSV conversion. This algorithm is implemented using the C ++ OpenCV library. The algorithm was applied to CCTV images captured over a month. The edge strength values calculated for the ROI region are found to be closely related to the fine dust concentration data. To infer the correlation between the two types fo data, a trend line in the form of a power equation is established using MATLAB. The number of data points deviating from the trend line accounts for around 12.5%. Therefore, the overall accuracy is about 87.5%.

Spatially Adaptive Color Demosaicing of Noisy Bayer Data (잡음을 고려한 공간적응적 색상 보간)

  • Kim, Chang-Won;Yoo, Du-Sic;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • In this paper, we propose spatially adaptive color demosaicing of noisy Bayer data. When sensor noises are not considered in demosaicing, they may degrade result image. In order to obtain high resolution image, sensor noises are considered in the color demosaicing step. We identify flat, edge and pattern regions at each pixel location to improve the performance of the algorithm and to reduce complexity. Based on the pre-classified regions, the demosaicing of the G channel is performed using the local statistics to reduce the interpolation error. The sensor noise is simultaneously removed by a modified version of non-local mean filter in the green and in the color difference domain. The R and B channels are interpolated easily using fully interpolated and denoised G and color difference values. Experimental results show that the proposed method achieves a significant improvement in terms of visual and numerical criteria, when compared to conventional methods.

A Method to Suppress False Alarms of Sentinel-1 to Improve Ship Detection

  • Bae, Jeongju;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.535-544
    • /
    • 2020
  • In synthetic aperture radar (SAR) based ship detection application, false alarms frequently occur due to various noises caused by the radar imaging process. Among them, radio frequency interference (RFI) and azimuth smearing produce substantial false alarms; the latter also yields longer length estimation of ships than the true length. These two noises are prominent at cross-polarization and relatively weak at co-polarization. However, in general, the cross-polarization data are suitable for ship detection, because the radar backscatter from background sea surface is much less in comparison with the co-polarization backscatter, i.e., higher ship-sea image contrast. In order to improve the ship detection accuracy further, the RFI and azimuth smearing need to be mitigated. In the present letter, Sentinel-1 VV- and VH-polarization intensity data are used to show a novel technique of removing these noises. In this method, median image intensities of noises and background sea surface are calculated to yield arithmetic tendency. A band-math formula is then designed to replace the intensities of noise pixels in VH-polarization with adjusted VV-polarization intensity pixels that are less affected by the noises. To verify the proposed method, the adaptive threshold method (ATM) with a sliding window was used for ship detection, and the results showed that the 74.39% of RFI false alarms are removed and 92.27% false alarms of azimuth smearing are removed.

Comparison of Thresholding Techniques for SVD Coefficients in CT Perfusion Image Analysis (CT 관류 영상 해석에서의 SVD 계수 임계화 기법의 성능 비교)

  • Kim, Nak Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.276-286
    • /
    • 2013
  • SVD-based deconvolution algorithm has been known as the most effective technique for CT perfusion image analysis. In this algorithm, in order to reduce noise effects, SVD coefficients smaller than a certain threshold are removed. As the truncation threshold, either a fixed value or a variable threshold yielding a predetermined OI (oscillation index) is frequently employed. Each of these two thresholding methods has an advantage to the other either in accuracy or efficiency. In this paper, we propose a Monte Carlo simulation method to evaluate the accuracy of the two methods. An extension of the proposed method is presented as well to measure the effects of image smoothing on the accuracy of the thresholding methods. In this paper, after the simulation method is described, experimental results are presented using both simulated data and real CT images.

An Achievement of High-rate Digital Subscriber Lines(HDSL) Interface Function into the ATM Switching System and its Service Implementation (ATM에HDSL 정합 기능 및 서비스 구현)

  • Yang, Choong-Reol;Chang, J.D.;Kim, J.T.;Kang, S.Y.;Kim, W.W.
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2378-2390
    • /
    • 1997
  • We, in this paper, have implemented E1 HDSL(high-bit-rate digital subscriber line) function over an ATM switching system. The maximum loop lengths for subscriber service and cell loss rates to meet the bit error rate of $10^{-7}$ at transmission of 2B1Q HDSL data of E1 rate over existing telephone copper wires in the presense of the significant impairments such as crosstalk, impulse noise, power line noise and longitudinal over the CSAs environment consisting of 26 gauge and 24 gauge unloaded copper telephone lines has assessed. We have confirmed the typical media services function such as video on demand(VOD) service for MPEG-1, image conference service and high-speed Internet access service over ATM switching system.

  • PDF

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Optimal Design Space Exploration of Multi-core Architecture for Real-time Lane Detection Algorithm (실시간 차선인식 알고리즘을 위한 최적의 멀티코어 아키텍처 디자인 공간 탐색)

  • Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper proposes a four-stage algorithm for detecting lanes on a driving car. In the first stage, it extracts region of interests in an image. In the second stage, it employs a median filter to remove noise. In the third stage, a binary algorithm is used to classify two classes of backgrond and foreground of an input image. Finally, an image erosion algorithm is utilized to obtain clear lanes by removing noises and edges remained after the binary process. However, the proposed lane detection algorithm requires high computational time. To address this issue, this paper presents a parallel implementation of a real-time line detection algorithm on a multi-core architecture. In addition, we implement and simulate 8 different processing element (PE) architectures to select an optimal PE architecture for the target application. Experimental results indicate that 40×40 PE architecture show the best performance, energy efficiency and area efficiency.

Development of Data Fusion Human Identification System Based on Finger-Vein Pattern-Matching Method and photoplethysmography Identification

  • Ko, Kuk Won;Lee, Jiyeon;Moon, Hongsuk;Lee, Sangjoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • Biometric techniques for authentication using body parts such as a fingerprint, face, iris, voice, finger-vein and also photoplethysmography have become increasingly important in the personal security field, including door access control, finance security, electronic passport, and mobile device. Finger-vein images are now used to human identification, however, difficulties in recognizing finger-vein images are caused by capturing under various conditions, such as different temperatures and illumination, and noise in the acquisition camera. The human photoplethysmography is also important signal for human identification. In this paper To increase the recognition rate, we develop camera based identification method by combining finger vein image and photoplethysmography signal. We use a compact CMOS camera with a penetrating infrared LED light source to acquire images of finger vein and photoplethysmography signal. In addition, we suggest a simple pattern matching method to reduce the calculation time for embedded environments. The experimental results show that our simple system has good results in terms of speed and accuracy for personal identification compared to the result of only finger vein images.