• Title/Summary/Keyword: noise damping

Search Result 1,039, Processing Time 0.027 seconds

A Study on the Floor Impact Sound Insulation Performance of Apartments depending on the Damping Materials (완충구조에 의한 공동주택 바닥충격음 차단성능 변화 연구)

  • Gi, No-Gab;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study aims to propose fundamental data for development of noise reduction system that is applied to classification for light-weight impact sound. For this reason, eight types of damping materials were constructed in new construction field. Comparison and analysis among the reduction materials were carried out on the acoustical characteristics through test. In the end, the suitability as a damping material was evaluated by the analysis.

  • PDF

Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction (승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구)

  • Yoo, Ji Woo;Chae, Ki-Sang;Cho, Jin Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

Response Of Steel Frame Structures With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.808-812
    • /
    • 2002
  • The feasibility of using elastic dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

  • PDF

Spray Deadener Application for Reduction of Vehicle NVH (스프레이 제진재에 의한 승용차 소음진동 저감)

  • 이종규;허덕재;조영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1150-1155
    • /
    • 2001
  • Vehicle Manufacturers use asphalt deadener sheets for their passenger cars to reduce noise and vibration from engine and road surface. Since their shapes are limited to a few variations, it is very difficult to reduce unnecessary weight by changing the shape of the deadeners. There is also damping performance limit in the asphalt sheets. Therefore, a high damping material should be implemented into the vehicle noise and vibration reduction activities to overcome the disadvantage of asphalt sheets. In this study, measurement of the damping loss factor and sound transmission loss were made to compare the properties and vehicle test and analysis was followed to evaluate the NVH performance of each deadener type in the vehicle.

  • PDF

Noise Characteristics in Lubricated and Non-lubricated Gears to Assess the Lubrication Damping Effect in Gear Design (기어설계시 윤활댐핑 효과 반영을 위한 윤활과 비윤활 상태에서의 소음특성에 관한 실험적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Jung-Tae;An, Jun-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.1-10
    • /
    • 2021
  • Gears, which rotate and transmit power by interlocking two cogwheels, were invented in BC. They have been used in various systems, including industrial machinery, transportation devices, and living facilities, through the industrial revolution. Regardless of how they are used, gears are a major source of noise and vibration. Many effective measures are being taken to reduce the radiation noise generated from gears, most commonly by lubrication. Lubrication in gear units reduces friction on interlocking gear surfaces, dampening radioactive noise. This can be very useful for quiet gear design if these lubricating damping effects can be reflected in the analytical phase for gear design. This study experimentally confirms the properties of lubricated and non-lubricated radioactive noise by designing a decelerator gearbox and analyzing the radioactive noise characteristics by torque, rotation, and the number of gears using computer analysis.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping (능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구)

  • 고성현;박현철;황운봉;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).