• Title/Summary/Keyword: nodulin 26

Search Result 3, Processing Time 0.018 seconds

Subcloning of Nodulin 26 Wild Type(S262) and Phosphorylation Site Mutant(S262D) into the Yeast Expression Vector pYES2

  • Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Wild type nodulin 26(nod 26) cDNA(S262) and phodphorylation aite mutant(S262D) were constructed by a yeast expression system using pYES2 plasmids(pTES2-D262 and pTES2-S262D) were sc-reened by restriction mapping with BamHI of KpnI. S262 nod 26 contained a sreine residue at position 262 and S262D nod 26 contained the substitution mutation of serine to aspartic acid residue at position 262 were verified by automated floursent DNA sequencing.

  • PDF

Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport

  • Gu, Riliang;Chen, Xiaoling;Zhou, Yuling;Yuan, Lixing
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.96-101
    • /
    • 2012
  • Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.

Characterization of the Lsi1 Homologs in Cucurbita moschata and C. ficifolia for Breeding of Stock Cultivars Used for Bloomless Cucumber Production

  • Jung, Jaemin;Kim, Joonyup;Jin, Bingkui;Choi, Youngmi;Hong, Chang Oh;Lee, Hyun Ho;Choi, Youngwhan;Kang, Jumsoon;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.333-343
    • /
    • 2017
  • Bloomless cucumber fruits are commercially produced by grafting onto the pumpkin stocks (Cucurbita moschata) to restricted silicon ($SiO_2$) absorption. Inhibition of silicon absorption in bloomless stocks is conferred by a mutant allele of the CmLsi1 homologous to Lsi1 in rice. In this study, we characterized the Lsi1 homologs in pumpkin (C. moschata) and its cold-tolerant wild relative C. ficifolia ('Heukjong') in order to develop a DNA marker for selecting a bloomless trait and to establish the molecular basis for breeding bloomless stock cultivars of C. ficifolia. A Cleaved amplified polymorphic sequence (CAPS) marker (CM1-CAPS) was designed based on a non-sysnonymous single nucleotide polymorphism (SNP, C>T) of the CmLsi1 mutant-type allele, and its applicability for Marker-assisted selection (MAS) was confirmed by evaluating three bloom and five bloomless pumpkin stock cultivars. Quantitative RT-PCR of the CmLsi1 for these stock cultivers implied that expression level of the CmLsi1 gene does not appear to be associated with the bloom/bloomless trait and may differ depending on plant species and tissues. A full length cDNA of the Lsi1 homolog [named CfLsi1($B^+$)] of 'Heukjong' (C. ficifolia), was cloned and sequence comparison between CmLsi1($B^+$) and CfLsi1($B^+$) revealed that there exists total 24 SNPs, of which three were non-synonymous. Phylogenetic analysis of CfLsi1($B^+$) and Lsi1 homologs further revealed that CfLsi1($B^+$) is closesly related to Nodulin 26-like intrinsic proteins (NIPs) and most similar to CpNIP1 of C. pepo than C. moschata.