Browse > Article
http://dx.doi.org/10.12972/kjhst.20170036

Characterization of the Lsi1 Homologs in Cucurbita moschata and C. ficifolia for Breeding of Stock Cultivars Used for Bloomless Cucumber Production  

Jung, Jaemin (Department of Horticultural Bioscience, Pusan National University)
Kim, Joonyup (Life and Industry Convergence Research Institute, Pusan National University)
Jin, Bingkui (Department of Horticultural Bioscience, Pusan National University)
Choi, Youngmi (Department of Horticultural Bioscience, Pusan National University)
Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, Pusan National University)
Lee, Hyun Ho (Department of Life Science and Environmental Biochemistry, Pusan National University)
Choi, Youngwhan (Department of Horticultural Bioscience, Pusan National University)
Kang, Jumsoon (Department of Horticultural Bioscience, Pusan National University)
Park, Younghoon (Department of Horticultural Bioscience, Pusan National University)
Publication Information
Horticultural Science & Technology / v.35, no.3, 2017 , pp. 333-343 More about this Journal
Abstract
Bloomless cucumber fruits are commercially produced by grafting onto the pumpkin stocks (Cucurbita moschata) to restricted silicon ($SiO_2$) absorption. Inhibition of silicon absorption in bloomless stocks is conferred by a mutant allele of the CmLsi1 homologous to Lsi1 in rice. In this study, we characterized the Lsi1 homologs in pumpkin (C. moschata) and its cold-tolerant wild relative C. ficifolia ('Heukjong') in order to develop a DNA marker for selecting a bloomless trait and to establish the molecular basis for breeding bloomless stock cultivars of C. ficifolia. A Cleaved amplified polymorphic sequence (CAPS) marker (CM1-CAPS) was designed based on a non-sysnonymous single nucleotide polymorphism (SNP, C>T) of the CmLsi1 mutant-type allele, and its applicability for Marker-assisted selection (MAS) was confirmed by evaluating three bloom and five bloomless pumpkin stock cultivars. Quantitative RT-PCR of the CmLsi1 for these stock cultivers implied that expression level of the CmLsi1 gene does not appear to be associated with the bloom/bloomless trait and may differ depending on plant species and tissues. A full length cDNA of the Lsi1 homolog [named CfLsi1($B^+$)] of 'Heukjong' (C. ficifolia), was cloned and sequence comparison between CmLsi1($B^+$) and CfLsi1($B^+$) revealed that there exists total 24 SNPs, of which three were non-synonymous. Phylogenetic analysis of CfLsi1($B^+$) and Lsi1 homologs further revealed that CfLsi1($B^+$) is closesly related to Nodulin 26-like intrinsic proteins (NIPs) and most similar to CpNIP1 of C. pepo than C. moschata.
Keywords
cucurbitaceae; Lsi2; Low silicon rice 1; marker-assisted breeding; transporters; RACE PCR;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Carmo DL, Silva CA, Lima JM, Pinheiro GL (2016) Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils. Rev Bras Solo 40:e0140795
2 Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57(5):810-818. doi:10.1111/j.1365- 313X.2008.03728.x
3 Choi EK, Kim B, Hwang US, Do HW, Suh DH (2013) Characterization of Blooming on Cucumber Fruits. Korean J Hort Sci Technol 31(2):159-164   DOI
4 Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363: 557-572. doi:10.1098/rstb.2007.2170   DOI
5 Food and Agriculture Organization of the United Nations (2014) FAO. http://www.fao.org/faostat/en/#data/QC/visualize
6 Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011) Review : The Importance of Molecular Markers in Plant Breeding Programmes. Global Journal of Science Frontier Research 11(5)
7 Kim HG, Yeo SS, Han DY, Park YH (2015) Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops. Korean J Hort Sci Technol 33(1)93-105. doi:10.7235/hort.2015.14120   DOI
8 Korean Statistical Information Service (2015) KOSIS. http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parentId=F# SubCont
9 Kwon YS, Choi KJ (2013) Construction of a DNA Profile Database for Commercial Cucumber (Cucumis sativus L.) Cultivars Using Microsatellite Marker. Korean J Hort Sci Technol 31(3):344-351   DOI
10 Lee SY, Chung SM (2011) Genetic Analysis of Polymorphic DNA Markers in Cucumber. J Life Science 31(3):468-472
11 Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2\;{\Delta}{\Delta}CT$ method. Methods 25:402-408. doi:10.1006/meth.2001.1262   DOI
12 Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688-691. doi:10.1038/nature04590   DOI
13 Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435 442. doi:10.1016/ j.tplants.2015.04.007
14 Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727-741   DOI
15 Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50(1):5-12. doi:10.1093/pcp/ pcn110   DOI
16 Patrick Jr WH, Yusuf A, Jugsujinda A (1987) Effects of Soil pH and Eh on Growth and Nutrient Uptake by Rice in a Flooded Oxisol of Sitiung Area of Sumatra, Indonesia
17 Mitani-Uneo N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6(7):991-994. doi:10.4161/psb.6.7.15462   DOI
18 Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66(2):231-240. doi:10.1111/j.1365-313X.2011.04483.x   DOI
19 Obrero A, Die JV, Roman B, Gomez P, Nadal S, Gonzalez-Verdejo CI (2011) Selection of Reference Genes for Gene Expression Studies in Zucchini (Cucurbita pepo) Using qPCR. J Agric Food Chem 59(10):5402-5411   DOI
20 Robinson RW, Decker-Walters DS (1997) Crop production science in horticulture series: cucurbits, CABI Publishing, Massachusetts, USA, pp 51-53
21 Schaefer HC, Heibl C, Renner SS (2009) Gourds afloat: A dated phylogeny reveals an Asian orgin of the gourd family(Cucurbitaceae) and numerous oversea dispersal events. Proc Biol Sci 276:843-851. doi: 10.1098/rspb.2008.1447   DOI
22 Seo JB, Choi KJ, Lee JW, Yang WM, Chung SJ (2004) Growth Characteristics of White Spine Cucumber by Bloomless Stock Cultivars. Korean J Hort Sci Technol 22(4):398-402
23 Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H (2017) Isolation and functional characterization of CsLsi1 , a silicon transporter gene in Cucumis sativus. Physiologia Plantarum 159(2):201-214. doi: 10.1111/ppl.12515   DOI
24 Szulc W, Rutkowska B, Hoch M, Spychaj-Fabisiak E, Murawska B (2015) Exchangeable silicon content of soil in a long-term fertilization experiment. Plant Soil Environ 61(10):458-461. doi:10.17221/438/2015-PSE
25 UNI-PASS (2015) UNI-PASS. https://unipass.customs.go.kr:38030/ets/index.do
26 Tachibana S (1988) The influence of root temperature on nitrate assimilation by cucumber and figleat gourd. Japan J Soc Hort Sci 57(3):440-447   DOI
27 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28(10):2731-2739. doi: 10.1093/molbev/msr121   DOI
28 Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Report 1:3-8
29 Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26 like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta (BBA) Biomembranes 1758(8):1165-1175. doi/10.1016/ j.bbamem.2006.03.024   DOI
30 Yamaji N, Ma JF (2007) Spatial Distribution and Temporal Variation of the Rice Silicon Transporter Lsi1.Plant Physiol143:1306-1313.doi:10.1104/pp.106.093005   DOI
31 Yamaji N, Mitatni N, Ma JF (2008) A Transporter Regulating Silicon Distribution in Rice Shoots. Plant Cell Online 20(5):1381-1389. doi:10.1105/tpc.108.059311   DOI
32 Yamamoto Y, Hayashi M, Kanamaru T, Watanabe T, Mametsuka S, Tanaka Y (1989) Studies on bloom on the surface of cucumber fruits. 2. Relation between the degree of bloom occurrence and contents of mineral elements. Bull Fukuoka Agric Res Cent9:1-6