• Title/Summary/Keyword: node width

Search Result 93, Processing Time 0.019 seconds

Dwarfing Effect by Different Temperature Treatment in Chloranthus glaber (온도에 따른 죽절초 왜화효과)

  • Kil, Mi Jung;Choi, Seong Youl;Kwon, Young Soon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.343-347
    • /
    • 2012
  • The purpose of this study was to examine the dwarfing effect in variable temperature treatments on 1-year-old and 3-year-old Chloranthus glaber. The plants grown in four difference growth chamber under a mean light intensity $500{\pm}20$ lux, RH of $40{\pm}5%$, and temperature of $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$ for 120 days from January 3, 2011. And then they were moved into a glass house (50% shading). In 1-year-old seedlings, the rate of plant height elongation was lowest at $5^{\circ}C$, but plant growth was not good. The number of leaves and leaf width were highly increased by $10^{\circ}C$ treatment although the plant height was slightly increased. Also the plant height of $15^{\circ}C$ and $20^{\circ}C$ was decreased and defoliation was started from the bottom leaves. Thus, $10^{\circ}C$ treatment was thought to be the most appropriate for dwarfing effect of 1-year-old seedlings. In 3-year-old seedlings, the plant height tended to increase with temperature, and growth pattern showed a similar trend between $5^{\circ}C$ and $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$. The number of leaves increased the most at $5^{\circ}C$. Lateral branches per node were mainly occurred at $5^{\circ}C$ and $10^{\circ}C$, whereas they almost didn't happen at $15^{\circ}C$ and $20^{\circ}C$. Flowering rate at $5^{\circ}C$ and $10^{\circ}C$ reached more than 90% and 60%, respectively, but it was too low at $15^{\circ}C$ and $20^{\circ}C$ until the end of August. From these results, it could improve plant quality of 1-year-old and 3-year-old Chloranthus glaber making compact potted plants when temperatures were maintained at $10^{\circ}C$ and $5^{\circ}C$, respectively.

Growth and Cut Flower Yield of Roses as Affected by Age of Rooted Cuttings (삽목묘의 묘령이 장미의 생장과 수량에 미치는 영향)

  • Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • This study was conducted to investigate the effect of age of transplants, propagated by cutting, of two cut rose (Rosa hybrida Hort.) cultivars on their subsequent growth and yield in an effort to develop an efficient cutting propagation method for domestic rose cultivars. Two cultivars used in this study were a standard type 'Pink Aurora' and a spray type 'Yellow King'. Cuttings were prepared as single node cuttings each with a five-leaflet leaf and were stuck in rockwool cubes ($5cm{\times}5cm{\times}5cm$, UR, Korea) at two different dates. Cuttings rooted for either 30 (stuck on Jan. 20, 2009) or 48 days (stuck on Jan. 2, 2009) were transplanted into a rockwool slabs ($10cm{\times}15cm{\times}100cm$, UR, Korea) on the same date, 18 Feb. 2009. Plant growth and cut flower quality were investigated for two successive harvests during the period of Jan. to July in 2009. In both cultivars, 48 days old plants showed some growth of the shoot and root before transplanting. However, in the case of 30 days old plants before transplanting no noticeable growth of the shoot and root was obserable in 'Pink Aurora', while only shoot growth, but not root growth to the bottom of the rooting medium, was observed in 'Yellow King'. This suggested cultivar-specific responses that in this experiment a spray type 'Yellow King' showed greater growth rate during the rooting stage than a standard type 'Pink Aurora'. In the measurement of growth and cut flower yield after transplanting, the 48 days old standard type 'Pink Aurora' produced greater number of cut flowers per plant than 30 days old plants, whereas their mean stem fresh weight was recorded smaller than that of the 30 days old plants. For 'Yellow King', 30 days old plants showed greater stem length, flower width, number of five-leaflet leaves per stem, stem fresh weight, and number of cut flowers per plant than 48 days old plants. Therefore, growth and yield were significantly affected by cultivar and age of the rooted cutting, and additional research is needed on the effect of age of rooted cuttings in more cultivars.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.