• Title/Summary/Keyword: node importance

Search Result 127, Processing Time 0.028 seconds

Performance Evaluation of ATM Node by Importance Sampling Simulation (중요샘플링 시뮬레이션에 의한 ATM 노드의 성능평가)

  • 국광호;이창호;강성열;오창환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.1-16
    • /
    • 1997
  • The cell loss probability recommended in the B-ISDN is in the range $10^{-8}~10^{-12}$. When a simulation technique is used to analyze the performance of the ATM node, an enormous amount of computer processing time is required. In this study, we derive an importance sampling simulation technique that can be used to evaluate the performance of the ATM node very quickly, that is, the probability that the queue size at the ATM node reaches some large value N. The simulation results show that the backlog probability obtianed by the importance saimpling simulation is very close to that obtained by the ordinary simulation and the computer time can be reduced drastically by the importance sampling simulation.

  • PDF

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

Query Processing based Branch Node Stream for XML Message Broker

  • Ko, Hye-Kyeong
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2021
  • XML message brokers have a lot of importance because XML has become a practical standard for data exchange in many applications. Message brokers covered in this document store many users. This paper is a study of the processing of twig pattern queries in XML documents using branching node streams in XML message broker structures. This work is about query processing in XML documents, especially for query processing with XML twig patterns in the XML message broker structure and proposed a method to reduce query processing time when parsing documents with XML twig patterns by processing information. In this paper, the twig pattern query processing method of documents using the branching node stream removes the twigging value of the branch node that does not include the labeling value of the branch node stream when it receives a twig query from the client. In this paper, the leaf node discovery time can be reduced by reducing the navigation time of nodes in XML documents that are matched to leaf nodes in twig queries for client twig queries. Overall, the overall processing time to respond to queries is reduced, allowing for rapid question-answer processing.

An Efficient Simulation of Discrete Time Queueing Systems with Markov-modulated Arrival Processes (MMAP 이산시간 큐잉 시스템의 속산 시뮬레이션)

  • Kook Kwang-Ho;Kang Sungyeol
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2004
  • The cell loss probability required in the ATM network is in the range of 10$^{-9}$ ∼10$^{-12}$ . If Monte Carlo simulation is used to analyze the performance of the ATM node, an enormous amount of computer time is required. To obtain large speed-up factors, importance sampling may be used. Since the Markov-modulated processes have been used to model various high-speed network traffic sources, we consider discrete time single server queueing systems with Markov-modulated arrival processes which can be used to model an ATM node. We apply importance sampling based on the Large Deviation Theory for the performance evaluation of, MMBP/D/1/K, ∑MMBP/D/1/K, and two stage tandem queueing networks with Markov-modulated arrival processes and deterministic service times. The simulation results show that the buffer overflow probabilities obtained by the importance sampling are very close to those obtained by the Monte Carlo simulation and the computer time can be reduced drastically.

  • PDF

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.

An Efficient Algorithm for Betweenness Centrality Estimation in Social Networks (사회관계망에서 매개 중심도 추정을 위한 효율적인 알고리즘)

  • Shin, Soo-Jin;Kim, Yong-Hwan;Kim, Chan-Myung;Han, Youn-Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In traditional social network analysis, the betweenness centrality measure has been heavily used to identify the relative importance of nodes. Since the time complexity to calculate the betweenness centrality is very high, however, it is difficult to get it of each node in large-scale social network where there are so many nodes and edges. In our past study, we defined a new type of network, called the expanded ego network, which is built only with each node's local information, i.e., neighbor information of the node's neighbor nodes, and also defined a new measure, called the expanded ego betweenness centrality. In this paper, We propose algorithm that quickly computes expanded ego betweenness centrality by exploiting structural properties of expanded ego network. Through the experiment with virtual network used Barab$\acute{a}$si-Albert network model to represent the generic social network and facebook network to represent actual social network, We show that the node's importance rank based on the expanded ego betweenness centrality has high similarity with that the node's importance rank based on the existing betweenness centrality. We also show that the proposed algorithm computes the expanded ego betweenness centrality quickly than existing algorithm.

Study on the Connection Node System of Irregular-shaped Curtain wall Facade using 3D Printed Smart Node System (자유형상 커튼월 구현을 위한 3D 프린팅을 활용한 스마트노드 시스템의 연구)

  • Na, SangHo;Yoo, SeungKyu;Park, YoungMi;Park, JungJoon;Kim, SungJin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.8-9
    • /
    • 2018
  • 3D printing has the unique advantage of the ability to customize freeform product even in small quantity. However, we need to select and apply the only necessary parts of it because of the high cost of the manufacturing technology. It is of critical importance in irregular-shaped curtain walls to ensure precision of construction as well as quality fo finish. Complex shape that have structural members at varying angles can have nodes of different shapes making it unfeasible to construct using a general node connection detail. Therefore, this study aims to utilize smart node system using 3D printing as a solution to complex irregular-shaped curtain wall design.

  • PDF

K-way Super Node Approach for Guaranteeing User's Global QoS (사용자 전역 QoS를 보장하기 위한 K-way 수퍼 노드 접근법)

  • Kang, Nam-Oh;Park, Sa-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.109-116
    • /
    • 2007
  • Nowadays, with the proliferation of Web services, developer and user can implement a complex application by composing registered Web services. In this trend, the quality of service of a composite Web service is of crucial importance for today's Service Oriented Computing (SOC) environment. But the global optimization of a composite Web service satisfying given QoS is classified to NP-hard problem. To solve this problem, we propose K-way Super node approach and show the effect of it from experimental results.

  • PDF

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.