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Abstract 

 

Vector data compression algorithm can meet requirements of different levels and scales by 
reducing the data amount of vector graphics, so as to reduce the transmission, processing time 
and storage overhead of data. In view of the fact that large threshold leading to comparatively 
large error in Douglas-Peucker vector data compression algorithm, which has difficulty in 
maintaining the uncertainty of shape features and threshold selection, a segmented 
Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the 
vertical chord ratio as the main feature to detect and extract the critical points with large 
contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the 
radial distance constraint, it selects the maximum point as the critical point, and introduces the 
threshold related to the scale to merge and adjust the critical points, so as to realize local feature 
extraction between two critical points to meet the requirements in accuracy. Finally, through a 
large number of different vector data sets, the improved algorithm is analyzed and evaluated from 
qualitative and quantitative aspects. Experimental results indicate that the improved vector data 
compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression 
error, results simplification and time efficiency. 
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1. Introduction 

Vector data compression has always been a research hotspot in the fields of Geographic 
Information System (GIS), Computer Automated Cartography, Computer Graphics, etc. With 
the rapid development of GPS positioning technology and spatial information service, the 
simplification of GPS trajectory data and the progressive transmission, visualization and 
multi-scale expression of vector data make the research in this field more active. The 
purpose is to improve graphic analysis ability, enhance rendering effect, reduce transmission 
and processing time, and reduce storage costs. However, there is an inevitable contradiction 
between good shape expression ability and small amount of data. Generally speaking, the 
larger the data volume is, the stronger the ability to express the curve shape will be. 
Reducing the data volume will inevitably weaken the ability to express the shape 
characteristics of the objects. The essence of vector data compression algorithm is to find a 
compromise between the shape expression ability and the data volume under a criterion. 

Common vector data compression algorithm can be divided into: traditional thinning 
algorithms, e.g. limit vertical distance method, Douglas-Peucker algorithm [1], etc., which 
are compressed based on the geometrical characteristics of the curve; thinning algorithms 
based on optimization algorithm, e.g. genetic algorithm [2], dynamic programming 
algorithm [3], particle swarm optimization algorithm [4], etc., which take the expression of 
vector data as an optimization problem and find the optimal results that meet the error 
conditions or the number of fixed points using optimization techniques; re-sampling methods, 
e.g. Li-Openshaw algorithm [5] and compression algorithm based on wavelet analysis [6], 
which generate new points to express the original elements on the basis of original elements 
according to specific mathematical relations. Among them, Douglas-Peucker algorithm (DP 
algorithm for short) is simple in principle and most widely used. It has the advantages of 
translation and rotation without deformation. After the tolerance is given, the method is 
unique to the result of vector curve compression [7, 8]. 

 In practical applications, the algorithm still has a larger area deviation and the 
contradiction between the compression degree and the retention of characteristic points of 
curvature variation [9]. At the same time, the method only considers the curve itself in the 
process of data processing, which may lead to topological dissimilation, and thus result in a 
larger accuracy error in the compression results. In recent years, many scholars have 
proposed a lot of improved DP-based algorithms to solve the above problems. Ma [10] and 
Zhang [11] et al. accelerated the calculation of DP algorithm from the perspectives of 
single-machine multi-threading parallel and multi-machine parallel respectively, and 
improved the efficiency of the algorithm. Pallero [12] checked the topological dissimilation 
through line segment intersection to ensure there is no self-intersection. In Ref. [13], a DP 
compression algorithm for surface vector data considering the topological relations of spatial 
objects was proposed, in which the common and non-common edges of the polygon are 
divided first and estimated in terms of the topological relations between each other, and then 
compressed according to the DP algorithm. Ebisch [14] modified the DP algorithm by 
redefining the maximum distance point. They effectively avoided the over compression of 
vector data, but the time efficiency of the algorithm was not ideal. In Ref. [15], by applying 
to the curve fitting method, the function relationship between the threshold value and the 
length of line elements as well as the number of points is obtained, and the optimization 
method of simplifying the threshold value is proposed therefore. However, the algorithm 
does not consider the determination of the threshold value under different scales. Chen [16] 
proposed an improved DP algorithm according to the theory of dynamic programming 
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algorithm and the characteristics of vector data. The advantage of such an algorithm is that 
the error of vector data compression result is small, but the time efficiency still needs to be 
improved. In Ref. [17], a vector data compression algorithm under the control of area 
deviation is proposed to improve the fidelity of the data after compression, but when the 
amount of vector data is too large, the improvement in compression efficiency of the 
algorithm is not obvious. Liu [18] improved the DP algorithm by combining the monotonic 
chain with the binary search method, and realized the self-intersection in vector data 
compression. Yet in the same way, this algorithm does not consider the determination of 
threshold under different scales. The improved DP algorithm mentioned above is helpful to 
reduce the area deviation and compression rate, but it is difficult for most of the algorithms. 
For complex vector data, there are still many repeated cycles and the computational 
efficiency is low. At the same time, there are uncertainties in the threshold selection, and 
when the threshold is larger, the result error is also larger and it is difficult to maintain the 
shape characteristics. Therefore, according to the problems above, this paper proposes a 
segmented DP algorithm based on the node importance and introduces a scale-related 
threshold calculation method for targeted improvement. In this algorithm, based on the 
measurement method of the node importance of vertical chord ratio, the critical points that 
are most conducive to the retention of graphic shape are extracted first to ensure its basic 
shape remains and then, the local features are extracted between each two critical points by 
applying to the DP algorithm to meet the accuracy requirement. 

This paper is organized as follows: a segmented DP algorithm based on the node 
importance is introduced in Section 2, including the identification of critical points and the 
merging of critical points based on radial distance constraint. Comparative experiment 
results and performance analysis of the algorithm are described in Section 3. We conclude 
our paper in Section 4. 

2. Segmented DP Algorithm Based on the Node Importance 
Generally, there are two segmentation methods available for vector data: segmentation 

method based on critical points and segmentation method based on morphological 
characteristic analysis [19]. The segmentation method based on critical points is usually used 
for division based on the variation of the extension direction of vector graphics at critical 
points, that is, the importance of critical points to the graphic shape. The segmentation 
method based on morphological characteristic analysis must guarantee the homogeneity of 
curve characteristics in the segments. The segmentation method proposed in this paper is a 
segmentation method based on critical points, and its segmentation concept is as follows: the 
importance of the nodes on the curve graphs is calculated, and the points with the maximum 
value are selected as critical points, and the scale-related thresholds combining the radial 
distance constraint are introduced to merge and adjust the critical points. In this way, we can 
not only delete redundant points, but also adjust some critical points to a more reasonable 
position, and finally compress the curves with reserved critical points. The first and last 
points of each segment in the reserved critical points are reserved in DP algorithm, ensuring 
that the basic shape of the curves remains, and thus to make sure the difficulty in maintaining 
the shape characteristics when the threshold is large can be overcome and that the time 
efficiency of the algorithm sees an improvement to a certain extent. At the same time, to 
ensure the extracted segment points (i.e. critical points) can reduce the accuracy loss while 
reflecting the overall morphological characteristics of the curves, local features of each 
segment between two critical points need to be extracted by using DP algorithm to ensure the 
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simplified results meet the accuracy requirements. The algorithm proposed in this paper is 
described below, mainly including the identification of critical points and the merging of 
critical points with radial distance constraint. 

2.1 Identification of Critical Points 
The importance of nodes on vector graphics to their shape structure is unbalanced, and 

some nodes are much more important than others. Nodes of great importance are more able 
to maintain the shape structure of the graphics than other nodes, and the deletion will lead to 
great changes in shape. The importance of a node can usually be measured by the 
relationship between the node and its two adjacent nodes. If a node on a line element is 
deleted, the line element will be offset by a certain distance from the original position. The 
larger the offset distance is, the greater the control effect of the node on the line element, and 
thus the greater the importance will be. As shown in Fig. 1, if the node ip  is deleted, the 
curve segment 1 1i i ip p p− +  becomes the line segment 1 1i ip p− + , that is, ip moves to '

ip , and the 
offset distance is the vertical distance from ip to 1 1i ip p− + . In addition, the control effect of 
vertical distance on the curve is related to the length ( -1 +1i ip p ) of 1 1i ip p− + . When -1 +1i ip p  is 
larger, the control ability of vertical distance is relatively weakened. Therefore, the vertical 
chord ratio, that is, the ratio of the vertical distance from the node to the connecting line 
between two adjacent nodes to the length of the connecting line between two adjacent nodes, 
is selected in this paper to measure the importance of the nodes. For unclosed vector 
graphics, a closed graph is formed by connecting the starting and ending points, so that the 
starting and ending points have an ordered front point and an ordered back point. As a result, 
the importance of any node ip  on vector graphics can be expressed as Formula (1), in 
which iChord( P ) is the chord length between points 1ip −  and 1ip + , and iVertical( p )  is the 
vertical distance from the point ip to the corresponding chord length. 

          i
i

i

Vertical( p )Impor tance( p )
Chord( p )

=          (1) 

 
Fig. 1. Measurement method of the node importance based on vertical chord ratio 

 
In general, vector data compression algorithms based on the node importance are 

usually given a threshold, and the points whose importance is greater than the threshold are 
reserved as critical points for compression and simplification, as shown in the Ref. [20]. Or 
the number of nodes k  of compression results is given, and the first k  points are selected 
as the compression results after sorting according to their importance, as shown in the Ref. 
[21]. Regardless of the node selection strategy, these methods will result in deleting multiple 
consecutive points, leading to excessive local deformation, as shown in Fig. 2 (simplification 
results in the Ref. [21]). For this purpose, the paper involves a calculation of the importance 
of nodes on vector graphics according to the measurement method of the node importance as 
shown in Formula (1), and the points of great importance are selected as critical points to 
maintain the basic shape characteristics of the graphics. Fig. 3 shows the node importance 
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curve of vector graphics in Fig. 2 and the identification results of critical points using 
Formula (1). As can be seen from Fig. 3, the critical points identified with this critical point 
identification method can maintain the overall shape of vector graphics. The results of two 
methods in Fig. 2 and Fig. 3 (b) show that the result of retaining 25 points is still better than 
the simplified result of retaining 39 points in Fig. 2 when only critical points are extracted 
from the same vector graphics. In Fig. 2 and Fig. 3, the solid line is the original curve and 
the dashed line is the simplified result. 

 

Fig. 2. Simplification results obtained by the algorithm proposed in Ref. [16] 

 

 (a) The node importance curve 

 
(b) Identification results of critical 

points using Formula (1) 
Fig. 3. The node importance curve and identification results of critical points 

2.2 Merging of Critical Points with Radial Distance Constraint 
The above identification results of critical points can maintain the overall shape of 

vector graphics, but the problem is that the critical points are not scale-dependent. According 
to the law of visual cognition, people’s cognition of objects is related to scale [22]. The 
critical points of vector elements are also scale-dependent, and the critical points under 
different scales are only important to the retention of element form at that scale. If a point on 
the element is considered as a critical point under the current scale, the point cannot be 
recognized after the scale changes, and the critical points describing the curve shape will 
change accordingly. As shown in Fig. 4, the set of critical points that can be identified under 
the original scale is 1, 2, 3... 15, and after the scale changes, the critical points 6, 8, 9, 11, 12, 
13, 14 will not be recognized, and the number of critical points is reduced. If the curve is still 
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segmented by the critical points under the original scale, there will be irrationality, which 
will lead to the reduction of compression rate. For this purpose, scale-related thresholds are 
introduced in this paper to merge and adjust critical points. During each merging, a critical 
point will be reduced to delete redundant critical points and guarantee the scale-dependency 
of critical points. During each adjustment, a critical point can be adjusted to a more 
reasonable position, so that the graphic shape can be maintained in a better way. 

 

 
(a) Critical points under the original scale 

 
 (b) Critical points after the scale changes 

 
Fig. 4. Scale-dependency of critical points 

 
The threshold selection of traditional DP algorithm needs to be determined manually 

and repeatedly through experiments, or obtained through experience. The threshold selection 
method of this algorithm is based on the principle of human vision, that is, the field distance 
of the minimum visible target under the target scale is taken as the distance threshold T , 
which is used for the combination and adjustment of critical points and the threshold of DP 
algorithm. According to the following Formula (2), the threshold value of different scales 
can be calculated directly under different target scales, which is simple, needs repeated 
experiments and conforms to the principle of human vision. In Formula (2), tS  is the 
denominator of the target scale and D  is the size of the minimum visible target. The value 
range of D  is [0.3, 0.5], and the unit is mm, usually selecting 0.4mm. The distance 
threshold T  is directly determined by the target scale, which ensures the scale of feature 
points and at the same time solves the problem of threshold uncertainty in DP algorithm. 

 
         tT D* S=    (2) 

The original curve is 1 2 nP { P ,P P }= K and the critical point is 1 2 mQ { Q ,Q Q }= L . The 
redundancy of the critical point 2 1iQ ( i m )≤ ≤ − depends on the point on the original curve 
between 1iQ − and 1iQ + . When the distance from the point between 1iQ − and 1iQ + on the 
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original curve to the connecting line between 1iQ −  and 1iQ +  is less than the distance 
threshold T , the critical point iQ is a redundant point, so it is necessary to merge the 
segments on both sides of iQ  and delete iQ  from the critical points set Q . 

The accuracy of curve compression is generally measured by displacement vector and 
deviation area, in which the former refers to the deviation distance between the point on the 
original curve and the compressed curve, and the latter refers to the sum of the area between 
the original curve and the compressed curve. In order to avoid deleting some critical points 
with small vertical distance but larger error area, as shown in Fig. 4 (b), when the scale 
continues to change, the distance from the interior points between critical points 7 and 15 to 
the connecting line between points 7 and 15 is less than the threshold T , the critical point 10 
shall be merged according to the above merging conditions. However, the merging will result 
in larger error in morphological structure because of its large error area. In addition, when 
dealing with maps with larger linear density, e.g. complex contour maps, etc., it is easy to 
cause disjoint before compression and intersected after compression. 

To solve this problem, the radial distance constraint [23] is introduced in this paper to 
reduce the morphological structure errors in the process of merging critical points, and is 
described as follows: the morphological characteristics of a curve are shown in Fig. 5, and 
the vertical distance from the critical point iQ  to the connecting line between 1iQ −  and 

1iQ +  is set as iVertical( Q ) . When iVertical( Q )  is less than the threshold condition T , the 
merging of the critical point iQ  depends on the distance of -1i iQ Q or +1i iQ Q . If -1i iQ Q or 

+1i iQ Q is greater than the radial distance constraint r , iQ is still reserved as a critical point. 
Otherwise, the critical point iQ  is deleted and the segments on both sides of iQ  are 
merged. 

 

 

Fig. 5. Radial distance constraint of critical points 
 

To reduce the morphological structure errors caused by merging, the following critical 
points will not be merged in this paper. The details are described as follows:  

(1) iVertical( Q )  is greater than or equal to the distance threshold T ; 
(2)There are two circumstances when iVertical( Q ) is less than the distance threshold T . 

The point with the maximum distance from the point between 1iQ −  and 1iQ + on the 
original curve to the connecting line between 1iQ −  and 1iQ + is set as M , and the vertical 
distance is Vertical( M ) ; 

1)When Vertical( M ) is greater than or equal to the distance threshold T , it indicates 
that the point M  can maintain the graphic shape in a better way than iQ . Therefore, iQ  
is adjusted to M  position, that is, iQ  is replaced with M , or M  is inserted into the 
critical points set Q , so that the shape of the curve can be maintained in a better way. In 
this paper, iQ  is chosen to be replaced by M  to improve the compression rate; 

 
 

iQ

r
-1iQ +1iQ

r r r r
r

iVertical( Q )
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2)When Vertical( M ) is less than the distance threshold T , the radial distance 

constraint is used for judgment: 
a. When iVertical( Q ) Vertical( M )≥ , whether -1i iQ Q or +1i iQ Q  is greater than or 

equal to the radial distance constraint r  needs to be calculated. If -1i iQ Q or +1i iQ Q  is 
greater than or equal to r , the critical point iQ will not be merged; 

b. When iVertical( Q ) Vertical( M )< , we need to calculate whether -1iQ M  or 

+1iMQ  is greater than or equal to the radial distance constraint r . If -1iQ M  or +1iMQ
is greater than or equal to r , the critical point iQ  will not be merged, and iQ  is adjusted 
to M position; 

To sum up, the merging and adjustment process of the algorithm is described as 
follows:  

(1)Initialized =2i ; 
(2)The distance threshold T  is calculated using Formula (2), and the radial distance 

constraint r  is set; 
(3)If iVertical( Q )  is greater than or equal to the distance threshold T , go to the step 8 

or step 4; 
(4)If Vertical( M ) is greater than or equal to the distance threshold T , adjust iQ  to 

M  position, and go to the step 8 or step 5; 
(5)If iVertical( Q ) Vertical( M )≥ , go to the step 6 or step 7; 

(6)The relationship between -1i iQ Q  or +1i iQ Q and r  is compared. If -1i iQ Q  or 

+1i iQ Q  is greater than or equal to r , don’t merge the critical point iQ  and go to the step 
8. Otherwise, the critical point iQ  is merged, and we will go to the step 8; 

(7)The relationship between -1iQ M or +1iMQ  and r  is compared. If -1iQ M or 

+1iMQ is greater than or equal to r , the critical point iQ  will not be merged, and iQ  is 
adjusted to M  position, and we will go to the step 8. Otherwise, merge the critical point 

iQ  and go to the step 8; 
(8) i + + ; go to the step 3. 
Through the above merging and adjustment, the critical points identified can maintain 

the overall shape of the graphics, and are scale-dependent, which conforms to the cognition 
law. Fig. 6 shows the identification results of critical points under three different scales. 
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(a) Original curve 

 
(b) 25 Critical points 

under the original Scale 

 
(c) 19 Critical points 

under the medium scale 

 
(d) 13 Critical points 
under the small scale 

 
Fig. 6. Identification results of critical points under different scales 

 

2.3 Algorithm Flowchart 
To further elaborate the segmented DP algorithm based on the importance of vertices 

proposed in this paper, the flow chart of the algorithm is given, as shown in Fig. 7. 
The main steps of the algorithm proposed in this paper are described as follows:         
(1) Calculate the importance of nodes. According to the node importance measurement 

method shown in Formula (1), the importance value of each node on the curve calculated 
and saved in the arrays Importments .           

(2) Select the maximum point. For each node on the graph, the maximum judgment 
method is used to select the eligible nodes according to the importance as the potential 
critical points, and save them to the potential critical points set Q . At the same time, the first 
and last nodes are also reserved as potential critical points. The judgment conditions are 
described as follows:         

( [ ]> [ 1])&&( [ ]> [ 1])Importments i Importments i Importments i Importments i− +  
Where [ ]Importments i  represents the importance value of the first i node.             
(3) Calculate the distance threshold T  and the radial distance constraint r .  
(4) Critical points consolidation and adjustment. See Section 2.2 for detailed steps.            
(5) Segmented DP simplification. According to the curve segmentation in critical points 

set Q , making the two adjacent critical points as the first and last points of the segmentation, 
simplify the segments by DP algorithm. 
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Fig. 7. Flow chart of the segmented DP algorithm based on the node importance 

3. Experimental Results and Analysis 
To analyze the algorithm performance, the DP algorithm and the improved algorithm 

are compared qualitatively and quantitatively, and analysis is made according to the 
experimental results. The quantitative analysis of algorithm performance is done in terms of 
compression rate, compression time and displacement distance, etc. under the same threshold, 
in which the compression rate is described as the ratio of the number of compressed points to 
the number of original data points, and the compression time is characterized by the average 
of multiple running times, and the displacement distance is defined as the sum of the 
distances from the points on the curve to the corresponding line segments on the 
compression curve, which reflects the overall error precision before and after the curve 
compression, that is, the degree of closeness. In terms of parameter setting, the value of 
radial distance r is positively related to thresholdT ,that is, =r Tα ∗ . In this paper, after a lot 
of experiments and analysis of vector data of different types, densities and orders of 
magnitude, the value of α is set as 1.6. 

3.1 Qualitative Analysis of Algorithm Performance 
Fig. 8 shows the compression results of the algorithm proposed in this paper and DP 

algorithm under the same threshold, in which the fine solid line is the original curve, and the 
thick solid line is the compression result of our algorithm, and the dashed line is the 
compression result of DP algorithm. Qualitatively, by comparing the compression results of 
two algorithms, the author finds the improved algorithm superior to traditional DP algorithm 
in terms of graphic shape retention, accuracy and compression result. The reason is that more 
points that contribute a lot to the curve shape are reserved in the improved algorithm. 

Calculate the importance of each node on the curve

Calculate the distance threshold T, and set the radial 
distance constraint r

Select the point set Q with the maxinum value

Merging and adjustment of critical points

Simplify the segments by DP algorithm( the 
threshold is T)

Is there the next segment ?

End

Yes

No
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(a) Simple elements 

 
(b) Relatively complex elements 

 
(c) Complex elements 

 
Fig. 8. Comparison of compression results between the improved algorithm and DP algorithm 

 

3.2 Quantitative Analysis of Algorithm Performance 
In order to further analyze the performance of the algorithms, this paper selects four 

vector data maps containing different data points as experimental data as shown in Fig. 9. In 
this paper, the traditional DP method and the improved algorithm are used to compress under 
multiple thresholds, and the compression experimental results are shown in Table 1. At the 
same time, Table 2 shows the comparison of compression error of the two algorithms under 
the same compression rate for four vector data maps. 
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(1) Data1 (2) Data2 

 

 

(3) Data3 (4) Data4 
 
 

Fig. 9. Vector map data 
 

It can be seen from Table 1 that in terms of compression error, the algorithm proposed 
in this paper has large improvement compared with DP algorithm, especially the 
improvement in accuracy in the case of large threshold, the compression error of four groups 
of experimental data is reduced by 20.35%, 15.33%, 14.87% and 11.03% respectively. In 
terms of time, compared with DP algorithm, the time efficiency of this algorithm is also 
improved, especially when the number of data points is large (such as Data4), the time 
efficiency is improved more obviously. In terms of compression rate, under different 
threshold conditions, the compression rate of this algorithm is slightly higher than that of DP 
algorithm, but not obvious. From Table 2, it can be seen that the compression error of this 
algorithm is also smaller than that of DP algorithm under the same compression rate of four 
groups of different vector data.   
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Table 1. Comparison of compression results of two algorithms for different vector data sets under 
different thresholds 

Data 
Set 

Object 
Scale 

Threshold 
(m)  

Number 
of 

Original 
Points 

Number of 
Compressed Points Compression Rate Displacement Distance 

(km) Running Time (ms) 

Our 
Algorithm DP Our 

Algorithm DP Our 
Algorithm DP Our 

Algorithm DP 

Data1 

1:1,000,000 400 

2394 

1446 1473 39.60 38.47 97.12 130.30 2.39 4.99 
1:2,500,000 1000 937 975 60.86 59.27 456.38 538.39 2.37 4.68 
1:4,000,000 1600 651 669 72.81 72.06 827.21 1027.41 2.04 4.52 
1:6,000,000 2400 449 466 81.24 80.53 1278.50 1605.18 1.64 4.37 

Data2 

1:250,000 100 

13691 

11806 11897 13.77 13.10 348.11 383.91 23.33  34.51  
1:500,000 200 9382 9411 31.47 31.26 2005.81 2219.82 23.24  34.11  

1:1,100,000 440 7299 7337 46.69 46.41 4486.24 5085.32 23.43  33.11  
1:2,500,000 1000 5064 5137 63.01 62.48 10508.48 12411.31 22.84  30.32  

Data3 

1:250,000 100 

66530 

40836 41272 38.62 37.96 987.16 1037.84 87.03 159.90 
1:500,000 200 30109 30795 54.74 53.71 2478.03 2835.77 75.31 146.65 

1:1,100,000 440 20394 20697 69.34 68.89 6182.18 7018.78 69.94 119.34 
1:2,500,000 1000 12498 12750 81.21 80.84 14015.81 16464.72 81.98 95.58 

Data4 

1:250,000 100 

237005 

209658 210282 11.54 11.28 1167.94 1381.63 381.79  638.60  
1:500,000 200 186700 187946 21.23 20.70 4286.29 4779.53 374.60  627.63  

1:1,100,000 440 151557 153383 36.05 35.28 14746.41 16574.82 355.97  604.29  
1:2,500,000 1000 112914 114380 52.36 51.74 43855.57 49291.13 345.59  579.56  

 

 

Table 2. Displacement distance comparison of the two algorithms for different vector data sets 
under the same compression rate 

Data Set Number of 
Compressed Points  

Displacement Distance (km) 

Our Algorithm DP 

Data1 

1446 97.12 153.72  

937 456.38 612.43  

651 827.21 1116.69  

449 1278.50 1732.29   

Data2 

11806 348.11 434.93  

9382 2005.81 2239.39  

7299 4486.24 5158.74  

5064 10508.48 12736.07  

Data3 

40836 987.16 1163.22  

30109 2478.03 3221.22  

20394 6182.18 7668.36  

12498 14015.81 18061.49  

Data4 

209658 1167.94 1443.42  

186700 4286.29 5043.33  

151557 14746.41 17504.46  

112914 43855.57 51216.22  
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4. Conclusion 
Many valuable achievements have been made in the compression and simplification 

research of vector data, but it is still a problem with research value due to the complexity and 
diversity of vector data. The paper proposes a segmented DP algorithm based on the 
importance of vertices to identify the important nodes using the measurement method of the 
importance of vertices of vertical chord ratio to ensure the overall morphological 
characteristics of graphics and segment them. Then, the author combines combine the radial 
distance constraint and DP algorithm to extract the local features of the segments between 
two critical points to meet the accuracy requirement. The experimental analysis indicates that 
the improved algorithm can not only maintain the overall shape characteristics of the curve 
in a better way, but also get smaller error accuracy in compression results, which effectively 
solves the problem that the error is larger when the threshold of DP algorithm is large. At the 
same time, this paper also gives the calculation formula of the thresholds in DP algorithm, 
which solves the problems that the threshold selection is uncertain and the experience or 
repeated experiment is required. However, there is no solution provided in this paper to the 
problem of topology dissimilation in the compression algorithm. Therefore, the future 
researches may consider focusing on this aspect. In addition, for the scale characteristics of 
critical points, this paper realizes its expression by merging and adjusting strategies. 
Although it is expressed, the time efficiency needs to be further improved. Therefore, it is 
necessary to further study the critical point extraction and establish a more reasonable and 
efficient multilevel and multi-scale critical point model. 
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