• Title/Summary/Keyword: node capture

Search Result 43, Processing Time 0.02 seconds

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.

Regional Path Re-selection Period Determination Method for the Energy Efficient Network Management in Sensor Networks applied SEF (통계적 여과 기법이 적용된 센서 네트워크에서 에너지 효율적인 네트워크 관리를 위한 영역별 경로 재설정 주기 결정 기법)

  • Park, Hyuk;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.69-78
    • /
    • 2011
  • A large-scale sensor network usually operates in open and unattended environments, hence individual sensor node is vulnerable to various attacks. Therefore, malicious attackers can physically capture sensor nodes and inject false reports into the network easily through compromised nodes. These false reports are forwarded to the base station. The false report injection attack causes not only false alarms, but also the depletion of the restricted energy resources in a battery powered network. The statistical en-route filtering (SEF) mechanism was proposed to detect and drop false reports en route. In SEF, the choice of routing paths largely affect the energy consumption rate and the detecting power of the false report. To sustain the secure routing path, when and how to execute the path re-selection is greatly need by reason of the frequent network topology change and the nodes's limitations. In this paper, the regional path re-selection period determination method is proposed for efficient usage of the limited energy resource. A fuzzy logic system is exploited in order to dynamically determine the path re-selection period and compose the routing path. The simulation results show that up to 50% of the energy is saved by applying the proposed method.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.