It has been confirmed that implementation of the no-slip boundary conditions for the lattice-Boltzmann method play an important role in the overall accuracy of the numerical solutions as well as the stability of the solution procedure. We in this paper propose a new algorithm, i.e. the method of the dynamic boundary condition for no-slip boundary condition. The distribution functions on the wall along each of the links across the physical boundary are assumed to be composed of equilibrium and nonequilibrium parts which inherit the idea of Guo's extrapolation method. In the proposed algorithm, we apply a dynamic equation to reflect the computational slip velocity error occurred on the actual wall boundary to the correction; the calculated slip velocity error dynamically corrects the fictitious velocity on the wall nodes which are subsequently employed to the computation of equilibrium distribution functions on the wall nodes. Along with the dynamic selfcorrecting process, the calculation efficiently approaches the steady state. Numerical results show that the dynamic boundary method is featured with high accuracy and simplicity.
This paper introduces a pressure correction method for microflow computation. Conventional CFD methods with no slip boundary condition fail to predict the rarefaction effect of the wall when simulating gas microflows in the slip-flow regime. Pressure correction method with an appropriate slip boundary condition is an efficient tool in analyzing microscale flows. The present unstructured SIMPLE algorithm adopts both the classical Maxwell boundary condition and Langmuir boundary condition proposed by Myong. The simulation results of microchannel flows show that the proposed method has an effective predictive capability for microscale flows.
기존의 천수흐름 해석 상용모형에서는 내부 경계조건을 단순히 완전활동조건으로 가정하여 유체의 흐름을 해석함으로써 구조물 주위에서의 유속, 와도, 수위, 전단력의 분포, 항력 및 양력의 시간에 따른 변화 등을 올바르게 해석하지 못하였다. 본 연구에서는 구조물 주위에서의 흐름특성을 정확하게 예측할 수 있는 유한요소모형을 개발하고, 구조물에서의 경계조건을 활동길이를 이용한 부분활동조건으로 묘사하여 내부경계조건에 따른 원형 실린더 후면에서의 층류 흐름특성을 분석하였다. 종횡방향 유속 및 와도의 시간에 따른 변화, 후류길이, 활동길이에 따른 와류열의 변화와 질량보존율을 비교한 결과 완전활동조건을 부여한 경우에는 와류열이 전혀 형성되지 않고 완전한 층류흐름이 발생하였다. 부분활동조건을 입력한 경우 실린더 표면에서의 유속분포가 변화되어 전단력의 크기와 와도의 발생에 영향을 미치므로 무활조건을 부여한 경우에 비해 와류열의 발생 주기가 짧아졌다. 최대 질량보존 오차는 무활조건을 적용한 경우 0.73%로 나타났으며, 무활조건에 비해 부분활동조건을 부여한 경우의 오차율이 최대 0.21% 감소하였다.
Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.
A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.
The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in a micro-system as an alternative tool. However, previous results were mainly focused on a simple geometry with flat walls because the LB method is modeled on uniform Cartesian lattices. When previous boundary conditions for the microflows are applied to curved walls, the use of them requires approximation of the curved boundary by a series of stair steps, and introduces additional errors. For macroflows, no-slip curved wall boundary treatments have been developed remarkably in order to overcome these limits. However, the investigations for the slip curved wall boundary have rarely been performed for microflows. In this work, a curved boundary treatment of the LB method for a slip flow has been introduced. The results of the LB method for 2D microchannel and 3D microtube flows are in excellent agreement with the analytical solutions.
Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.
We develop a novel immersed boundary (IB) method based on implicit direct forcing scheme for incompressible flows. The proposed IB method is based on an iterative procedure for calculating the direct forcing coupled with the momentum equations in order to satisfy no-slip boundary conditions on IB surfaces. We perform simulations of two-dimensional flows over a circular cylinder for low and moderate Reynolds numbers. The present method shows that the errors for estimated velocities on IB surfaces are significantly reduced even for low Reynolds number with a fairly large time step while the previous methods based on direct forcing failed to provide no-slip boundary conditions on IB surfaces.
NSBT(No Slip Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the solid wall of obstacle in a flow field. In our research, NSBT was used to perform LBM simulation of a flow over a circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of NSBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a circular and square cylinder in a channel and the results were compared against the solution of Navier-Stokes equation. The simulations were performed in a moderate range of Reynolds number at each cylinder position to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is in the range of 200$\sim$250. For the gap parameter $\gamma$ = 2 cases at Re > 240, the vortex shedding were symmetric and it resembled the Karmann vortex. As the cylinder approached to one wall, the vorticity significantly reduced in length while the vorticity on the other side elongated and the vorticity combined with the wall boundary-layer vorticity. The resultant $C_d$ by LBM concurred with the results of DNS simulation performed by previous researchers.
본 연구에서는 여러가지의 성형조건에서 미끄름을 지배하는 상수를 측정하고, 유동 선단(flow front)에 미치는 이 상수의 영향을 검토한다. 또 측정된 상수를 가 지고 사각형 및 중공 원형 평판 압축성형에 대해서 2차원 유한 요소해석을 하고 실험 결과와 비교 검토한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.