• Title/Summary/Keyword: no-slip boundary condition

검색결과 34건 처리시간 1.04초

A Dynamic Method for Boundary Conditions in Lattice Boltzmann method

  • 서용권;강금분;강상모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2797-2802
    • /
    • 2007
  • It has been confirmed that implementation of the no-slip boundary conditions for the lattice-Boltzmann method play an important role in the overall accuracy of the numerical solutions as well as the stability of the solution procedure. We in this paper propose a new algorithm, i.e. the method of the dynamic boundary condition for no-slip boundary condition. The distribution functions on the wall along each of the links across the physical boundary are assumed to be composed of equilibrium and nonequilibrium parts which inherit the idea of Guo's extrapolation method. In the proposed algorithm, we apply a dynamic equation to reflect the computational slip velocity error occurred on the actual wall boundary to the correction; the calculated slip velocity error dynamically corrects the fictitious velocity on the wall nodes which are subsequently employed to the computation of equilibrium distribution functions on the wall nodes. Along with the dynamic selfcorrecting process, the calculation efficiently approaches the steady state. Numerical results show that the dynamic boundary method is featured with high accuracy and simplicity.

  • PDF

미소유동 해석을 위한 압력수정기법 및 미끄럼 경계조건 (Pressure Correction Method and Slip Boundary Conditions for Microflows)

  • 최형일;맹주성;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.430-435
    • /
    • 2001
  • This paper introduces a pressure correction method for microflow computation. Conventional CFD methods with no slip boundary condition fail to predict the rarefaction effect of the wall when simulating gas microflows in the slip-flow regime. Pressure correction method with an appropriate slip boundary condition is an efficient tool in analyzing microscale flows. The present unstructured SIMPLE algorithm adopts both the classical Maxwell boundary condition and Langmuir boundary condition proposed by Myong. The simulation results of microchannel flows show that the proposed method has an effective predictive capability for microscale flows.

  • PDF

저 레이놀즈 수에서 실린더 경계 유속조건에 따른 흐름 특성 (Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number)

  • 송창근;서일원;김태원
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2267-2275
    • /
    • 2013
  • 기존의 천수흐름 해석 상용모형에서는 내부 경계조건을 단순히 완전활동조건으로 가정하여 유체의 흐름을 해석함으로써 구조물 주위에서의 유속, 와도, 수위, 전단력의 분포, 항력 및 양력의 시간에 따른 변화 등을 올바르게 해석하지 못하였다. 본 연구에서는 구조물 주위에서의 흐름특성을 정확하게 예측할 수 있는 유한요소모형을 개발하고, 구조물에서의 경계조건을 활동길이를 이용한 부분활동조건으로 묘사하여 내부경계조건에 따른 원형 실린더 후면에서의 층류 흐름특성을 분석하였다. 종횡방향 유속 및 와도의 시간에 따른 변화, 후류길이, 활동길이에 따른 와류열의 변화와 질량보존율을 비교한 결과 완전활동조건을 부여한 경우에는 와류열이 전혀 형성되지 않고 완전한 층류흐름이 발생하였다. 부분활동조건을 입력한 경우 실린더 표면에서의 유속분포가 변화되어 전단력의 크기와 와도의 발생에 영향을 미치므로 무활조건을 부여한 경우에 비해 와류열의 발생 주기가 짧아졌다. 최대 질량보존 오차는 무활조건을 적용한 경우 0.73%로 나타났으며, 무활조건에 비해 부분활동조건을 부여한 경우의 오차율이 최대 0.21% 감소하였다.

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측 (Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions)

  • 강윤호
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

Slip flow 해석을 위한 격자볼츠만 방법의 곡면처리기법 (CURVED BOUNDARY TREATMENT OF THE LATTICE BOLTZMANN METHOD FOR SLIP FLOW SIMULATIONS)

  • 정남균
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.77-84
    • /
    • 2014
  • The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in a micro-system as an alternative tool. However, previous results were mainly focused on a simple geometry with flat walls because the LB method is modeled on uniform Cartesian lattices. When previous boundary conditions for the microflows are applied to curved walls, the use of them requires approximation of the curved boundary by a series of stair steps, and introduces additional errors. For macroflows, no-slip curved wall boundary treatments have been developed remarkably in order to overcome these limits. However, the investigations for the slip curved wall boundary have rarely been performed for microflows. In this work, a curved boundary treatment of the LB method for a slip flow has been introduced. The results of the LB method for 2D microchannel and 3D microtube flows are in excellent agreement with the analytical solutions.

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

저 레이놀즈수에 적용 가능한 가상경계기법 (AN IMMERSED BOUNDARY METHOD FOR LOW REYNOLDS NUMBER FLOWS)

  • 박현욱;이창훈;최정일
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.34-41
    • /
    • 2013
  • We develop a novel immersed boundary (IB) method based on implicit direct forcing scheme for incompressible flows. The proposed IB method is based on an iterative procedure for calculating the direct forcing coupled with the momentum equations in order to satisfy no-slip boundary conditions on IB surfaces. We perform simulations of two-dimensional flows over a circular cylinder for low and moderate Reynolds numbers. The present method shows that the errors for estimated velocities on IB surfaces are significantly reduced even for low Reynolds number with a fairly large time step while the previous methods based on direct forcing failed to provide no-slip boundary conditions on IB surfaces.

점착경계처리법을 이용한 원형실린더 주위의 유동해석 (NUMERICAL STUDY ON FLOW OVER CIRCULAR CYLINDER USING NO SLIP BOUNDARY TREATMENT)

  • 강정호;김형민
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.28-36
    • /
    • 2006
  • NSBT(No Slip Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the solid wall of obstacle in a flow field. In our research, NSBT was used to perform LBM simulation of a flow over a circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of NSBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a circular and square cylinder in a channel and the results were compared against the solution of Navier-Stokes equation. The simulations were performed in a moderate range of Reynolds number at each cylinder position to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is in the range of 200$\sim$250. For the gap parameter $\gamma$ = 2 cases at Re > 240, the vortex shedding were symmetric and it resembled the Karmann vortex. As the cylinder approached to one wall, the vorticity significantly reduced in length while the vorticity on the other side elongated and the vorticity combined with the wall boundary-layer vorticity. The resultant $C_d$ by LBM concurred with the results of DNS simulation performed by previous researchers.

섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석 (Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet)

  • 장수학;김석호;백남주;김이곤
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.163-168
    • /
    • 1991
  • 본 연구에서는 여러가지의 성형조건에서 미끄름을 지배하는 상수를 측정하고, 유동 선단(flow front)에 미치는 이 상수의 영향을 검토한다. 또 측정된 상수를 가 지고 사각형 및 중공 원형 평판 압축성형에 대해서 2차원 유한 요소해석을 하고 실험 결과와 비교 검토한다.