• Title/Summary/Keyword: no removal

Search Result 2,611, Processing Time 0.034 seconds

Study on the Reduction of Energy Consumption in the Pulsed Corona Discharge Process for NOx Removal (질소산화물 제거를 위한 펄스코로나 방전공정의 에너지 소모 저감에 관한 연구)

  • 정재우;손병학;조무현;목영선;남궁원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.475-483
    • /
    • 1999
  • A lab-scale test was carried out to study the reduction of electrical energy consumption in the pulsed corona discharge process for nitrogen oxides removal. The experiment was mainly focused on 1) the activation of pollution removal reactions by chemical additives and 2) the optimization of electrical circuit for the efficient energy transfer from the power supply to the corona reactor. Hydrocarbon chemical additives used in the experiment are thought to be responsible for the enhancement of the NO conversion through the chain reactions of free radicals such as, R, RCO, and RO. Electrical energy consumption per converted NO molecule has a minimum value of 17 eV when pentanol is injected. When ethylene and propylene are injected, 30 eV and 22 eV of electrical energy consumption is required for the conversion of NO molecule respectively. The ratio of the pulse forming capacitance$(C_e)$ to the reactor capacitance$(C_R)$ plays an important role in the energy transfer efficiency to the reactor. Maximum energy transfer efficiency of approximately 72% could be obtained by using the pulse forming capacitance which is 3.4 times larger than the reactor capacitance, and also the maximum NO conversion efficiency was observed with the same condition.

  • PDF

A study on the small sewerage system using SBR process (SBR을 이용한 소규모 오수처리시설에 관한 연구)

  • 박민정;김동석
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.427-437
    • /
    • 2003
  • An evaluation of the application of SBR and biofilm en small sewerage system was conducted. A newly developed small sewerage system, using SBR, was successfully applied to the nutrient treatment using municipal wastewater. The system was consisted of 6 compartments. Two systems, with SBR (A type) or without SBR (B type), were compared by several parameters (COD, SS, T-N, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N, NO$_2$$\^$ -/-N, alkalinity, pH, DO) in all experimental periods. Also, the time variation of several parameters (DO, pH, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N NO$_2$$\^$-/-N) was examined in a SBR applied sewerage system. T-N removal efficiency of B type Was higher than that Of A type by the effect of nitrification and denitrification even though the COD removal efficiencies were similar. In aeration stage, the pH was decreased from 6.4 to 6.3 within 1 h and increased to 6.65 at the end of aerobic stage, and pH was decreased to 6.2 in non-aeration stage, and these phenomena were explained. The effects of nitrification and denitrification were compared in A type and B type sewerage system, and the typical nitrification and denitrification were observed in B type sewerage system.

Electrochemical Corrosion and Chemical Mechanical Polishing(CMP) Characteristics of Tungsten Film using Mixed Oxidizer (혼합 산화제를 사용한 텅스텐 막의 전기화학적 부식 및 CMP 특성)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2005
  • In this paper, the effects of oxidants on tungsten chemical mechanical polishing (CMP) process were investigated using three different oxidizers such as Fe(NO₃)₃, KIO₃ and H₂O₂. Moreover, the interaction between the tungsten film and the oxidizer was discussed by potentiodynamic polarization measurement with three different oxidizers, in order to compare the effects of W-CMP and electrochemical characteristics on the tungsten film as a function of oxidizer. As an experimental result, the tungsten removal rate reached a maximum at 5 wt% Fe(NO₃)₃concentration, and when 5 wt% H₂O₂was added in the slurry, the removal rate of W increased. Also, the microstructures of surface layer by atomic force microscopy(AFM) image were greatly influenced by the slurry chemical composition of oxidizers. It was shown that the surface roughness and removal rate of the polished surface were improved in Fe(NO₃)₃than KIO₃. The electrochemical results indicate that the corrosion current density of the 5 wt% H₂O₂ and 5 wt% H₂O/sub 2+/+ 5 wt% Fe(NO₃)₃was higher than the other oxidizers. Therefore, we conclude that the W-CMP characteristics are strongly dependent on the kinds of oxidizers and the amounts of oxidizer additive.

The Plasma Chemistry and Particle Growth in the Low Temperature Plasma Reactor for removal of NOx (NOx 제거용 저온 플라즈마 반응기에서의 플라즈마 화학 및 입자 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.331-341
    • /
    • 1999
  • We analyzed theoretically the removal efficiency and the particle growth inside the pulse corona discharge reactor to remove $NO_x$ and investigated the effects of process variables such as the NO and $NH_3$ input concentrations. Most of NO is converted into $NO_2$ and $HNO_3$ and the $HNO_3$ reacts with $NH_3$ to form the $NH_4NO_3$ particles. About 6.4% of NO is converted into $HNO_2$ which form the $NH_4NO_2$ particles by reaction with $NH_3$. Some of $NO_2$ follows the reaction pathway to form $NO_3$ and $N_2O_5$. The amount of particles formed inside the reactor is basically determined by the input $NH_3$ concentration. The ratio of NO to $NH_3$ affects the reactor length for particle formation significantly. The higher the input concentrations of NO and $NH_3$ are, the faster the particles grow.

  • PDF

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Early fragment removal on in vitro fertilization day 2 significantly improves the subsequent development and clinical outcomes of fragmented human embryos

  • Kim, Seok-Gi;Kim, Youn-Young;Park, Ji-Young;Kwak, Su-Jin;Yoo, Chang-Seok;Park, Il-Hae;Sun, Hong-Gil;Kim, Jae-Won;Lee, Kyeong-Ho;Park, Hum-Dai;Chi, Hee-Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.3
    • /
    • pp.122-128
    • /
    • 2018
  • Objective: To determine whether fragment removal on in vitro fertilization (IVF) day 2 improved the subsequent development and pregnancy outcomes of fragmented embryos compared to similar-grade embryos without fragment removal. Methods: This study was a retrospective analysis involving 191 IVF cycles in which all embryos had over 10% fragmentation (grade 3 or 4) on day 2 of the IVF-embryo transfer cycle from March 2015 to December 2017. IVF cycles were divided into the fragment removal group (n = 87) and the no fragment removal group (n = 104) as a control cohort. Before fragment removal, embryos with fragmentation on day 2 were incubated in $Ca^{2+}$- and $Mg^{2+}$-free biopsy medium under paraffin oil for 30 minutes. Microsurgical fragment removal was performed with later-assisted hatching and a handmade suction micropipette that had an outer diameter of $30{\mu}m$. Results: There were no significant differences in the characteristics of the patients between the control and the fragment removal groups. After fragment removal and subsequent in vitro culture for 24 hours, the number of blastomeres ($7.1{\pm}1.7$ vs. $6.9{\pm}1.6$) was comparable between the transferred embryos in the two groups, but the morphological grade of the embryos in the fragment removal group ($1.9{\pm}0.7$) was significantly higher than that of the control group ($3.1{\pm}0.5$, p< 0.01). The clinical pregnancy (43.7%) and implantation rates (25.8%) in the fragment removal group were significantly higher than those in the control group (28.8% and 14.0%, respectively; p< 0.05). Conclusion: Early fragment removal on day 2 significantly improved the subsequent development and pregnancy outcomes of fragmented embryos.

Removal Characteristics of NOx Using a Mixed Soil-Biofilter (토양 혼합여재를 이용한 질소산화물 제거특성)

  • Cho, Ki-Chul;Sin, Eun-Sang;Hwang, Gyeong-Cheol;Cho, Il-Hyoung;Lee, Nae-Hyun;Yeo, Hyun-Gu
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.15-26
    • /
    • 2006
  • As traffic in city-centre around the world continues to increase, so levels of atmospheric pollutants continue to rise. High concentrations of NOx can have negative effects on human health, and we must find new ways to reduce their levels in the air we breathe. Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide $(NO_2)$ produced using $O_3$ oxidation, at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was carried out to evaluate the removal characteristics of NOx through a laboratory-scale biofilter packed with soil as a packing material. A mixture media (yellow soil (30%): soil (40%): compost (10%): a used briquet (20%)) was applied. After about 1day of operation, the removal efficiency for $NO_2$ in all experiments with a constant condition ($25^{\circ}C$ and water humidity (60%)) was over 98%. The retention times of the section between phase I and phase II for formation and reduction of $NO_3$ NO and $NO_2$ on the initial $NO_3$ concentration was 50min $(O_3:195\;ppb),\;55min\;(O_3:925\;ppb),\;65min\;(O_3:1743\;ppb),\;70min\;(O_3:2616\;ppb),\;75min\;(O_3:3500\;ppb)$, respectively The soil biofilter system is a unique technology that purifies urban air by utilizing the natural processes that take place in the soil. Although some of the processes are quite complex, they can broadly be summarized as adsorption onto soil particles, dissolution into soil pore water, and biochemical.

Operating parameters in electrodialysis membrane processes for removal of arsenic in groundwater (지하수내 비소제거를 위한 전기투석 막여과 운전인자 연구)

  • Choi, Su Young;Park, Keun Young;Lee, Seung Ju;Choi, Dan Bi;Park, Ki Young;Kim, Hee Jun;Kweon, Ji Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.449-457
    • /
    • 2016
  • In this study, the effectiveness of electrodialysis in removing inorganic arsenic from groundwater was investigated. To evaluate the feasibility of the electrodialysis, operating parameters such as treatment time, feed concentration, applied voltage and superficial velocity were experimentally investigated on arsenic removal. The higher conductivity removal and arsenic removal efficiency were obtained by increasing applied voltages and operation time. An increase of salinity concentrations in arsenic polluted groundwater exerted no effects on the arsenic separation ratios. Arsenic polluted waters were successfully treated with stack voltages of 1.8 ~ 2.4 V/cell-pair to approximately 93.4% of arsenic removal. Increase flow rate in diluate cell gave positive effect to removal rate. However, increase of superficial velocity in the concentrated cell exerted no effects on either the conductivity reduction or on the separation efficiency. Hopefully, this paper will provide direction in selecting appropriate operating conditions of electrodialysis for arsenic removal.

The removal characteristics of No, SOx for plasma reactor separated flue gas duct from discharge domain (연소가스관로와 방전영역 분리형 플라즈마 반응기에서 Nox, SOx 제거특성)

  • Park, J.Y.;Koh, Y.S.;Lee, J.D.;Song, W.S.;Park, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2007-2009
    • /
    • 1999
  • In this paper, discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was 2.5[$\ell$/min] for bubbling aqueous NaOH solution. Ammonia gas(14.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio[MR] was determined based on $NH_3$ to [NO+$SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration but SOx removal rate was not significantly effect by initial concentration, and NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF