• Title/Summary/Keyword: nivalenol

Search Result 39, Processing Time 0.025 seconds

Effects of Storage Temperature and Grain Moisture Content on the Contaminaton of Fusarium and Fusariotoxin in Hulled Barley Grains (겉보리의 저장온도와 수분함량이 붉은곰팡이병균과 곰팡이독소 오염에 미치는 영향)

  • Ham, Hyeonheui;Lee, Kyung Ah;Lee, Theresa;Han, Sanghyun;Hong, Sung Kee;Lee, Soohyung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Fusarium graminearum is a mycotoxigenic plant pathogen, which could remain in harvested barley grains and produces mycotoxins at preferable conditions during storage. To elucidate the factors affecting contamination of Fusarium and Fusariotoxin in hulled barley during storage, three hulled barley grain samples were collected from Jeolla province. Moisture content of each sample was adjusted to 14% and 20%, respectively, then stored in two warehouses where temperature was controlled differently: one controlled below $12^{\circ}C$, and the other with no control. While monitoring temperature and relative humidity of warehouses hourly, grain moisture content, Fusarium occurrence, and mycotoxin level was analyzed at 1, 3, 6, and 12 month after storage. The average monthly temperature and relative humidity ranged $3{\sim}29^{\circ}C$, and 58~70% in warehouse without temperature control, whereas $3{\sim}13^{\circ}C$ and 62~74% in warehouse controlled below $12^{\circ}C$. Grain moisture content of the samples decreased in both warehouses except 14% samples which increased in the warehouse with temperature control. Fusarium frequency of the contaminated grains decreased continuously in the warehouse without temperature control. But in the warehouse below $12^{\circ}C$, Fusarium decreasing rate was slower because of high grain moisture content. In most samples, nivalenol was detected more in the warehouse without temperature control after 12 month but there was little difference after 1, 3, and 6 month. Therefore, it will be efficient to store hulled barley in the warehouse controlled below $12^{\circ}C$ to reduce Fusarium contamination when the barley is not dried properly. In addition, when storage period exceeds 12 month, it is recommended to store hulled barley in a warehouse controlled below $12^{\circ}C$ to reduce nivalenol contamination.

Identification and Chemotype Profiling of Fusarium Head Blight Disease in Triticale (국내 재배 트리티케일에 발생한 붉은곰팡이병의 다양성 및 독소화학형 분석)

  • Yang, Jung-Wook;Kim, Joo-Yeon;Lee, Mi-Rang;Kang, In-Jeong;Jeong, Jung-Hyun;Park, Myoung Ryoul;Ku, Ja-Hwan;Kim, Wook-Han
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.

Change in the Sensitivity to Propiconazole of Fusarium graminearum Species Complex Causing Head Blight of Barley and Wheat in Jeolla Province (전남북 지역 맥류 붉은곰팡이병균의 Propiconazole 약제에 대한 감수성 변화)

  • Jiseon Baek;Ju-Young Nah;Mi-Jeong Lee;Su-Bin Lim;Jung-Hye Choi;Ja Yeong Jang;Theresa Lee;Hyo-Won Choi;Jeomsoon Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.281-289
    • /
    • 2022
  • Fusarium head blight is an important disease of small grains. It is mainly caused by members of the Fusarium graminearum species complex (FGSC). Barley and wheat growers spray fungicides, especially demethylation-inhibitor fungicides, to suppress the disease. The objective of this study was to examine the changes in the sensitivity of the FGSC population to the triazole fungicide, propiconazole. A total of 124 and 350 isolates of FGSC were obtained from barley and wheat in Jeolla Province during 2010-2016 and 2020-2021, respectively. The species identity and trichothecene chemotypes of the FGSC isolates were determined based on polymerase chain reaction assays targeting translation elongation factor 1-alpha and TRI12 genes, respectively. Sensitivity to propiconazole was determined based on the effective concentration that reduced 50% of the mycelial growth (EC50) using the agar dilution method. Of all isolates, F. asiaticum with the nivalenol chemotype was the most common (83.9% in 2010-2016 and 96.0% in 2020-2021), followed by F. asiaticum with the 3-acetyl deoxynivalenol chemotype (12.1% in 2010-2016 and 2.9% in 2020-2021). The EC50 values of the isolates collected in 2010-2016 and 2020-2021 ranged from 0.0180 to 11.0166 ㎍/mL and 1.3104 to 17.9587 ㎍/mL, respectively. The mean EC50 value of the isolates increased from 3.8648 ㎍/mL in 2010-2016 to 5.9635 ㎍/mL in 2020-2021. The baseline resistance to propiconazole was determined to be 7 ㎍/mL, based on the EC50 value of isolates collected in 2010-2016, and the ratio of resistant isolates increased from 9.7% in 2010-2016 to 28.6% in 2020-2021.

Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

  • Goral, Tomasz;Stuper-Szablewska, Kinga;Busko, Maciej;Boczkowska, Maja;Walentyn-Goral, Dorota;Wisniewska, Halina;Perkowski, Juliusz
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.226-244
    • /
    • 2015
  • Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.

Effects of barley and barley bran contaminated with Fusarium spp. on the growth and feed efficiency of fattening and growing pigs (푸사리움속 곰팡이에 오염된 보리와 보리겨의 급여가 비육돈 및 육성빈돈의 생산성 및 사료이용효율에 미치는 영향)

  • Lee, Wang-Shik;Lee, Hyun-June;Ki, Kwang-Seok;Noh, Hwan-Gook;Kang, Seok-Jin;Jung, Young-Hun;Baek, Kwang-Soo;Hur, Tai-Young
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • The present study was carried out to investigate the effect of barley and barley bran contaminated with Fusarium spp on growth performance and feed efficiency of fattening and growing pigs. In experiment 1, total 48 fattening Landrace pigs were used in a fattening trial for 71 days. Pigs weighing around 75 kg were allocated into different substitution groups containing 0, 10, 20 and 30% of barley contaminated Fusarium spp. In experiment 2, total 16 growing Landrace pigs were used in a growing trial for 45 days. Pigs weighing around 29.4 kg were allocated into different substitution groups containing 0, 5, 10 and 20% of barley bran contaminated Fusarium spp. Mycotoxin concentrations of barley and barley bran contaminated with 30% Fusarium spp were 0.452 and 1.049 ppm for deoxynivalenol, 8.125 and 17.646 ppm for nivalenol and 0.023 and 0.029 ppm for zearalenone, respectively. In experiment 1, no differences were found in weight gain and feed intake between control group (0%) and 10 or 20% substitution groups, but in 30% substitution group, weight gain and feed intake were significantly lower (p < 0.05) than those in control group. After slaughtering, the extended haemorrhage of the fundus region in stomach was observed in 20 or 30% substitution groups. In experiment 2, weight gain and feed intake were not significantly different among treatment groups. After slaughtering of experimental pigs, the extended haemorrhage of the fundus region in stomach was observed in pigs fed diet with 20% substitution group. These results suggest that the feeding of diet with contaminated highly levels of Fusarium spp was negative effect on growth and feed efficiency in growing and fattening pig.

Occurrence of Fungi and Fusarium Mycotoxins in the Rice Samples from Rice Processing Complexes (미곡종합처리장 곡류시료 내 곰팡이 오염과 Fusarium 독소 발생)

  • Lee, Theresa;Lee, Soohyung;Kim, Lee-Han;Ryu, Jae-Gee
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.289-294
    • /
    • 2014
  • Rice samples including paddy, husk, brown rice, blue-tinged rice, broken rice, discolored rice and polished rice were collected from rice processing complexes(RPC) nationwide to determine the contamination of fungi and mycotoxins on rice during 2010-2013. Among the samples, paddy rice had the highest frequencies of fungal and Fusarium occurrence, and the frequencies decreased along with milling as husk was the next. Blue-tinged rice or discolored rice was similar with brown rice for fungal occurrence, and polished rice showed the lowest frequency. Among Fusarium species, F. graminearum species complex occupied 87% in 2012 but did 35-39% in 2011 and 2013. Aspergillus and Penicillium species appeared at low frequency in most samples but occurred at higher frequency in certain RPC samples. Alternaria, Nigrospora, and Epicoccum species occurred similarly to the pattern of total fungi. The rice samples from 2010-2012 were analyzed for the occurrence of Fusarium mycotoxins including deoxynivalenol, nivalenol, zearalenone, and other trichothecenes. The most highly contaminated sample was discolored rice in terms of frequency, level, ratio of simultaneous contamination with multiple toxins, followed by blue-tinged rice.

Variation in Trichothecene and Zearalenone Production by Fusarium graminearum Isolates form Corn and Barley in Korea (한국산 옥수수 및 보리로 부터 분리한 Fusarium graminearum 균주의 Trichothecene과 Zearalenone 생성변이)

  • Kim, Jin-Cheol;Park, Ae-Ran;Lee, Yin-Won;Youn, Hee-Ju;Cha, Seung-Hee
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.312-317
    • /
    • 1993
  • A total of 110 Fusarium graminearum isolates were obtained from corn and barley samples which were collected from Kangwon province and the southern part of Korea, respectively. The isolates were tested for trichothecene and zearalenone (ZEA) production in rice culture. The incidences of trichothecene production by 51 isolates of F. graminearum from corn were 64.7% for deoxynivalenol (DON), 7.8% for 3-acetyldeoxynivalenol (3-ADON),33.3% for 15-acetylde-oxynivalenol (15-ADON), 21.6% for invalenol (NIV), and 13.7% for 4-acetylnivalenol (4-ANIV). DON producers frequently co-produced 15-ADON rather than 3-ADON. On the other hand, the incidences of trichothecene production by 59 isolates of F. graminearum from barley were 71.2% for NIV, 61.0% for 4-ANIV, and only one isolate produced DON and 3-ADON. The incidences and mean levels of ZEA producers were 32.0% and 71.$\mu$g/g for the isolates from corn, and 29.0% and 74 .$\mu$g/g for the isolates from barley. There was a great regional difference in trichothecene production of F. graminearum isolates between Kangwon province and the southern part of Korea.

  • PDF

Survey on Fusarium Mycotoxin Contamination in Oat, Sorghum, Adlay, and Proso Millet during the Harvest Season in Korea (귀리, 수수, 율무, 기장의 수확기에 발생하는 Fusarium 곰팡이독소 오염도 조사)

  • Lee, Mi Jeong;Wee, Chi-Do;Ham, Hyenheui;Choi, Jung-Hye;Baek, Ji Sun;Lim, Soo Bin;Lee, Theresa;Kim, Jeom-Soon;Jang, Ja Yeong
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • A total of 244 cereal samples (oat, sorghum, adlay, and proso millet) were collected from fields to examine the contamination of Fusarium mycotoxins in cereals during harvest season in 2017 and 2018. The contamination levels of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) were analyzed individually by using the immunoaffinity column clean-up method with ultra performance liquid chromatography, and fumonisins (FUM) were analyzed by using the QuEChERS method with liquid chromatography-mass spectrometry. Highest level of NIV contamination (120.0-3277.0 mg/kg) was observed in oat samples among the analyzed cereals. In the adlay samples, DON contamination was the highest (maximum level 730.0 ㎍/kg). The proso millet samples had a high frequency of detection of NIV and ZEA (61.5% and 57.9%, respectively), but the levels were low (average detection level of NIV, 75.6 ㎍/kg, for ZEA, 21.5 ㎍/kg). Among the cereal samples, sorghum had the highest contamination frequency of DON, ZEA, and FUM, and the co-occurrence of Fusarium mycotoxin was 70.0%, which was higher than the average of 29.9%. In order to safely manage Fusarium mycotoxin levels in cereals, continuous research on the development of contamination prevention technologies together with monitoring of mycotoxin contamination is needed.

Trends in Mycotoxin Contamination of Cereals and Cereal Products in Korea (국내산 곡류와 곡류 가공품의 곰팡이독소 오염 동향)

  • Theresa, Lee;Seul Gi, Baek;Sosoo, Kim;Ji-Seon, Paek;Jin Ju, Park;Jangnam, Choi;Jung-Hye, Choi;Ja Yeong, Jang;Jeomsoon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.179-194
    • /
    • 2022
  • In this review, the mycotoxin contamination of Korean cereals and their products is analyzed by crop based on scientific publications since 2000. Barley, rice, and corn were investigated heavier than the others. The common mycotoxins occurred in all cereals and their products were deoxynivalenol and zearalenone. Nivalenol was detected in all samples analyzed but more frequently or mainly in barley, rice, and oat. Fumonisin was commonly detected in corn and sorghum but also in adlay, millet, and rice. Adlay and millet were similar in the contamination pattern that fumonisin and zearalenone were the most frequently detected mycotoxins. Zearalenone was the most commonly detected mycotoxin with concentrations higher than the national standards (maximum limit), followed by deoxynivalenol, and aflatoxin. However, most occurrence levels were below the maximum limits for respective mycotoxins. This result shows that barley, rice, corn, sorghum, millet, and adlay are more vulnerable to mycotoxin contamination than other cereals and therefore continuous monitoring and safety management are necessary.