DOI QR코드

DOI QR Code

Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

  • Goral, Tomasz (Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute) ;
  • Stuper-Szablewska, Kinga (Department of Chemistry, Poznan University of Life Sciences) ;
  • Busko, Maciej (Department of Chemistry, Poznan University of Life Sciences) ;
  • Boczkowska, Maja (National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute - NRI) ;
  • Walentyn-Goral, Dorota (Department of Plant Pathology, Plant Breeding and Acclimatization Institute - National Research Institute) ;
  • Wisniewska, Halina (Institute of Plant Genetics, Polish Academy of Sciences) ;
  • Perkowski, Juliusz (Department of Chemistry, Poznan University of Life Sciences)
  • Received : 2015.03.17
  • Accepted : 2015.04.19
  • Published : 2015.09.01

Abstract

Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.

Keywords

References

  1. Abdellatif, K. F. and AbouZeid, H. M. 2011. Assessment of genetic diversity of Mediterranean bread wheat using Randomly Amplified Polymorphic DNA (RAPD) markers. J. Genet. Eng. Biotechnol. 9:157-163. https://doi.org/10.1016/j.jgeb.2011.10.002
  2. Argyris, J., Sanford, D. Van and TeKrony, D. 2003. Fusarium graminearum infection during wheat seed development and its effect on seed quality. Crop Sci. 43:1782-1788. https://doi.org/10.2135/cropsci2003.1782
  3. Bai, G-H., Plattner, R., Desjardins, A., Kolb, F. and McIntosh, R.A. 2001. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat. Plant Breed. 120:1-6. https://doi.org/10.1046/j.1439-0523.2001.00562.x
  4. Berthiller, F., Dall'Asta, C., Schuhmacher, R., Lemmens, M., Adam, G. and Krska, R. 2005. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food. Chem. 53:3421-3425. https://doi.org/10.1021/jf047798g
  5. Blair, M. W., Panaud, O. and McCouch, S. R. 1999. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98:780-792. https://doi.org/10.1007/s001220051135
  6. Boczkowska, M. and Tarczyk, E. 2013. Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet. Resour. Crop Evol. 60:2157-2169. https://doi.org/10.1007/s10722-013-9984-1
  7. Boczkowska, M., Nowosielski, J., Nowosielska, D. and Podyma, W. 2014. Assessing genetic diversity in 23 early Polish oat cultivars based on molecular and morphological studies. Genet. Resour. Crop Evol. 61:927-941. https://doi.org/10.1007/s10722-014-0087-4
  8. Bottalico, A. and Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108:611-624. https://doi.org/10.1023/A:1020635214971
  9. Bottalico, A. and Logrieco, A. 1998. Toxigenic Alternaria species of economic importance. In: Mycotoxins in Agriculture and Food Safety, eds. by K. K. Sinha, D. Bhatnager, pp. 65-108. Marcel Dekker Inc., New York, USA.
  10. Boutigny, A. L., Richard-Forget, F. and Barreau, C. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 121:411-423. https://doi.org/10.1007/s10658-007-9266-x
  11. Buerstmayr, H., Ban, T. and Anderson, J. A. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 128:1-26. https://doi.org/10.1111/j.1439-0523.2008.01550.x
  12. Burlakoti, R. R., Mergoum, M., Kianian, S. F. and Adhikarim, T. B. 2010. Combining different resistance components enhances resistance to Fusarium head blight in spring wheat. Euphytica 172:197-205. https://doi.org/10.1007/s10681-009-0035-0
  13. Busko, M., Kulik, T., Ostrowska, A., Goral, T. and Perkowski, J. 2014. Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol. Lett. 359:85-93. https://doi.org/10.1111/1574-6968.12569
  14. Carvalho, A., Lima-Brito, J., Macas, B. and Guedes-Pinto, H. 2009. Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochem. Genet. 47:276-294. https://doi.org/10.1007/s10528-009-9227-5
  15. Champeil, A., Dore, T. and Fourbet, J. 2004. Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 166:1389-1415. https://doi.org/10.1016/j.plantsci.2004.02.004
  16. Chelkowski, J., Gromadzka, K., Stepien, L., Lenc, L., Kostecki, M. and Berthiller, F. 2012. Fusarium species, zearalenone and deoxynivalenol content in preharvest scabby wheat heads from Poland. World Mycotoxin J. 5:133-141. https://doi.org/10.3920/WMJ2011.1304
  17. Chelkowski, J., Perkowski, J., Grabarkiewicz-Szczesna, J., Kostecki, M. and Golinski, P. 2001. Toxigenic fungi and mycotoxins in cereal grains and feeds in Poland. In: Occurrence of Toxigenic Fungi and Mycotoxins in Plants, ed. by A. Logrieco, pp. 111-130. Food and Feeds in Europe. European Commission, COST Action 835, EUR 19695.
  18. Cowger, C. and Arellano, C. 2013. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes. Phytopathology 103:460-471. https://doi.org/10.1094/PHYTO-03-12-0054-R
  19. Cowger, C., Patton-Ozkurt, J., Brown-Guedira, G. and Perugin, L. 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 99:320-327. https://doi.org/10.1094/PHYTO-99-4-0320
  20. Dashchi, S., Mandoulakani, B. A., Darvishzade, R. and Bernousi, I. 2012. Molecular similarity relationships among Iranian bread wheat cultivars and breeding lines using ISSR markers. Not. Bot. Horti. Agrobo. 40:254-260.
  21. Dice, L. 1945. Measures of the amount of ecologic association between species. Ecology 26:297-302. https://doi.org/10.2307/1932409
  22. Draeger, R., Gosman, N., Steed, A., Chandler, E., Thomsett, M., Srinivasachary, Schondelmaier, J., Buerstmayr, H., Lemmens, M., Schmolke, M., Mesterhazy, A. and Nicholson, P. 2007. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor. Appl. Genet. 115:617-625. https://doi.org/10.1007/s00122-007-0592-3
  23. Edwards, S. G., Imathiu, S. M., Ray, R. V., Back, M. and Hare, M. C. 2012. Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int. J. Food Microbiol. 156:168-175. https://doi.org/10.1016/j.ijfoodmicro.2012.03.020
  24. Emel, S. 2010. Evaluation of ISSR markers to assess genetic variability and relationship among winter triticale ($\times$ Triticosecale Wittmack) cultivar. Pak. J. Bot. 42:2755-2763.
  25. Fernandez, E., Figueiras, M. and Benito, C. 2002. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet. 104:845-851. https://doi.org/10.1007/s00122-001-0848-2
  26. Foroud, N. A. and Eudes, F. 2009. Trichothecenes in cereal grains. Int. J. Mol. Sci. 10:147-173. https://doi.org/10.3390/ijms10010147
  27. Gautam, P. and Dill-Macky, R. 2012. Free water can leach mycotoxins from Fusarium-infected wheat heads. J. Phytopathol. 160:484-490. https://doi.org/10.1111/j.1439-0434.2012.01928.x
  28. Gervais, L., Dedryver, F., Morlais, J.-Y., Bodusseau, V., Negre, S., Bilous, M., Groos, C. and Trottet, M. 2003. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor. Appl. Genet. 106:961-970. https://doi.org/10.1007/s00122-002-1160-5
  29. Golinski, P., Perkowski, J., Kostecki, M., Grabarkiewicz-Szczesna, J. and Chelkowski, J. 1996. Fusarium species and Fusarium toxins in wheat in Poland - a comparison with neighbour countries. Sydowia 48:12-22.
  30. Goral, T., Ochodzki, P., Walentyn-Goral, D. and Justesen, A. F. 2011. Fusarium species and Fusarium mycotoxins in grain of winter wheat in Poland in 2010. Conference Abstracts, 33rd Mycotoxin Workshop, Freising, Germany, 30th May - 1st June, 96 p.
  31. Goral. T., Ochodzki. P., Walentyn-Goral. D., Nielsen. L. K., Justesen, A. F. and Jorgensen L. N. 2012. Effect of pre-crop and weather conditions on infection of heads of spring wheat with Fusarium fungi and content of mycotoxins in grain. Biul IHAR 265:11-21. (in Polish)
  32. Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S. and Somers, D. J. 2012. Integrated metabolo-proteomic approach to decipher the mechanisms by which weat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7(7):e40695. doi:10.1371/journal.pone.0040695.
  33. Hai, L., Wagner, C. and Friedt, W. 2007. Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica 130:213-225. https://doi.org/10.1007/s10709-006-9008-6
  34. Handa, H., Namiki, N., Xu, D. and Ban, T. 2008. Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol. Breed. 22:71-84. https://doi.org/10.1007/s11032-008-9157-7
  35. Holzapfel, J., Voss, H.-H., Miedaner, T., Korzun, V., Haberle, J., Schweizer, G., Mohler, V., Zimmermann, G. and Hartl, L. 2008. Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor. Appl. Genet. 117:1119-1128. https://doi.org/10.1007/s00122-008-0850-z
  36. Horevaj, P., Gale, L. and Milus, E. 2011. Resistance in winter wheat lines to initial infection and spread within spikes by deoxynivalenol and nivalenol chemotypes of Fusarium graminearum. Plant Dis. 95:31-33. https://doi.org/10.1094/PDIS-03-10-0167
  37. Kokkonen, M., Jestoi, M. and Laitila, A. 2012. Mycotoxin production of Fusarium langsethiae and Fusarium sporotrichioides on cereal-based substrates. Mycotoxin Res. 28:25-35. https://doi.org/10.1007/s12550-011-0113-8
  38. Kollers, S., Rodemann, B., Ling, J., Korzun, V., Ebmeyer, E., Argillier, O., Hinze, M., Plieske, J., Kulosa, D., Ganal, M. W. and Roder, M. S. 2013. Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS ONE 8:e57500. https://doi.org/10.1371/journal.pone.0057500
  39. Kriss, A. B., Paul, P. A., Xu, X., Nicholson, P., Doohan, F. M., Hornok, L., Rietini, A., Edwards, S. G. and Madden, L. V. 2012. Quantification of the relationship between the environment and Fusarium head blight, Fusarium pathogen density, and mycotoxins in winter wheat in Europe. Eur. J. Plant Pathol. 133:975-993. https://doi.org/10.1007/s10658-012-9968-6
  40. Kumaraswamy, G. K., Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., Rioux, S., Mamer, O. and Faubert, D. 2011. Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur. J. Plant Pathol. 130:29-43. https://doi.org/10.1007/s10658-010-9729-3
  41. Lemmens, M., Buerstmayr, H., Krska, R., Schuhmacher, R., Grausgruber, H. and Ruckenbauer, P. 2004. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. Eur. J. Plant Pathol. 110:299-308. https://doi.org/10.1023/B:EJPP.0000019801.89902.2a
  42. Lemmens, M., Scholz, U., Berthiller, F., Dall'Asta, C., Koutnik, A., Schuhmacher, R., Adam, G., Buerstmayr, H., Mesterhazy, A., Krska, R. and Ruckenbauer, P. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant Microbe Interact. 18:1318-1324. https://doi.org/10.1094/MPMI-18-1318
  43. Lemmens, M., Koutnik, A., Steiner, B., Buerstmayr, H., Berthiller, F., Schuhmacher, R., Maier, F. and Schafer, W. 2008. Investigations on the ability of Fhb1 to protect wheat against nivalenol and deoxynivalenol. Cereal Res. Commun. 36:429-435.
  44. Leplat, J., Friberg, H., Abid, M. and Steinberg, C. 2013. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 33:97-111. https://doi.org/10.1007/s13593-012-0098-5
  45. Łukanowski, A., Lenc, L. and Sadowski, C. 2008. First report on the occurrence of Fusarium langsethiae isolated from wheat kernels in Poland. Plant Dis. 92:488-488. https://doi.org/10.1094/PDIS-92-3-0488A
  46. Maric, S., Bolaric, S., Martincic, J., Pejic, I. and Kozumplik, V. 2004. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed. 123:366-369. https://doi.org/10.1111/j.1439-0523.2004.00956.x
  47. Mesterhazy, A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 114:377-386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
  48. Mesterhazy, A. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 108:675-684. https://doi.org/10.1023/A:1020631114063
  49. Mesterhazy, A. 2002. Theory and practice of the breeding for Fusarium head blight resistance in wheat. J. Appl. Genet. 43A:289-302.
  50. Mesterhazy, A., Bartok, T., Mirocha, C. G. and Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118:97-110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x
  51. Mesterhazy, A., Toth, B. and Kaszonyi, G. 2006. Sources of "environmental interactions" in phenotyping and resistance evaluation ways to neutralize them. In: The global Fusarium initiative for international collaboration - strategic planning workshop held at CIMMYT. eds. by T. Ban, J. M. Lewis, E. E. Phipps, pp. 84-92. El Batan, Mexico.
  52. Mesterhazy, A., Toth, B., Bartok, T. and Varga, M. 2008. Breeding strategies against FHB in winter wheat and their relation to type I resistance. Cereal Res. Commun. 36:37-43. https://doi.org/10.1556/CRC.36.2008.Suppl.B.6
  53. Miedaner, T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116:201-220. https://doi.org/10.1111/j.1439-0523.1997.tb00985.x
  54. Miedaner, T., Moldovan, M. and Ittu, M. 2003. Comparison of spray and point inoculation to assess resistance to Fusarium head blight in a multienvironment wheat trial. Phytopathology 93:1068-1072. https://doi.org/10.1094/PHYTO.2003.93.9.1068
  55. Miedaner, T. and Perkowski, J. 1996. Correlations among Fusarium culmorum head blight resistance, fungal colonization and mycotoxin contents in winter rye. Plant Breed 115:347-351. https://doi.org/10.1111/j.1439-0523.1996.tb00932.x
  56. Miedaner, T. and Reinbrecht, C. 2001. Trichothecene content of rye and wheat genotypes inoculated with a deoxynivalenoland a nivalenol-producing isolate of Fusarium culmorum. J. Phytopathol. 251:245-251.
  57. Miedaner, T. and Voss, H. H. 2008. Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci. 48:2115-2122. https://doi.org/10.2135/cropsci2008.02.0107
  58. Miedaner, T., Wurschum, T., Maurer, H. P., Korzun, V., Ebmeyer, E. and Reif, J. C. 2011. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol. Breed. 28:647-655. https://doi.org/10.1007/s11032-010-9516-z
  59. Miller, J. D. 2008. Mycotoxins in small grains and maize: old problems, new challenges. Food Addit. Contam. 25:219-230. https://doi.org/10.1080/02652030701744520
  60. Miller, J. D. 1994. Epidemiology of Fusarium ear diseases of cereals. In: Mycotoxins in Grain: Compounds Other than Aflatoxins, eds. by J. D. Miller, H. L. Trenholm, pp. 19-36. Eagan Press, St Paul, MN, USA.
  61. Miller, J. D. and Arnison, P. G. 1986. Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can. J. Plant. Pathol. 8:147-150. https://doi.org/10.1080/07060668609501818
  62. Mitrofanova, O. P., Strelchenko, P. P., Konarev, A. V. and Balfourier, F. 2009. Genetic differentiation of hexaploid wheat inferred from analysis of microsatellite loci. Russ. J. Genet. 45:1351-1359. https://doi.org/10.1134/S102279540911009X
  63. Moreno, S., Martin, J. and Ortiz, J. 1998. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica 101:117-125. https://doi.org/10.1023/A:1018379805873
  64. Najaphy, A., Parchin, R. A. and Farshadfar, E. 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnol. Biotechnol. Equip. 25:2634-2638. https://doi.org/10.5504/BBEQ.2011.0093
  65. Nicholson, P., Bayles, R. and Jennings, P. 2008. Understanding the basis of resistance to Fusarium head blight in UK winter wheat (REFAM). Project Report No. 432; HGCA Agriculture and Horticulture Development Board, Stoneleigh Park, Kenilworth, Warwickshire, UK.
  66. Nielsen, L. K., Jensen, J. D., Rodriguez, A., Jorgensen, L. N. and Justesen, A. F. 2012. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 157:384-392. https://doi.org/10.1016/j.ijfoodmicro.2012.06.010
  67. Ochodzki, P. and Goral, T. 2006. Production of mycotoxins by selected Fusarium graminearum and F. culmorum isolates cultured on rice and wheat. Conference Papers of 28. Mykotoxin-Workshop, Bydgoszcz, Poland, 29-31 May, 73 p.
  68. Perkowski, J., Busko, M., Stuper, K., Kostecki, M., Matysiak, A. and Szwajkowska-Michalek, L. 2008. Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia 63:542-547.
  69. Perkowski, J., Kiecana, I., Stachowiak, J. and Basinski, T. 2003. Natural occurrence of scirpentriol in cereals in infected by Fusarium species. Food Addit. Contam. 20:572-578. https://doi.org/10.1080/0265203031000100773
  70. Perkowski, J., Plattner, R. D., Golinski, P., Vesonder, R. F. and Chelkowski, J. 1990. Natural occurrence of deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, nivalenol, 4,7-dideoxynivalenol, and zearalenone in Polish wheat. Mycotoxin Res. 6:7-12. https://doi.org/10.1007/BF03192133
  71. Perkowski, J., Stachowiak, J., Kiecana, I., Golinski, P. and Chelkowski, J. 1997. Natural occurrence of Fusarium mycotoxins in Polish cereals. Cereal Res. Commun. 25:379-380.
  72. Perkowski, J., Wiwart, M., Busko, M., Laskowska, M., Berthiller, A., Kandler, S. and Krska, R. 2007. Fusarium toxins and total fungal biomass indicators in naturally contaminated wheat samples from north-eastern Poland in 2003. Food Addit. Contam. 24:1292-1298. https://doi.org/10.1080/02652030701416566
  73. Reddy, M. P., Sarla, N. and Siddiq, E. A. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9-17. https://doi.org/10.1023/A:1020691618797
  74. Roldan-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A. and De Loose, M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6:125-134. https://doi.org/10.1023/A:1009680614564
  75. Rutkoski, J., Benson, J., Jia, Y., Brown-Guedira, G., Jannink, J.-L. and Sorrells, M. 2012. Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome J. 5:51. https://doi.org/10.3835/plantgenome2012.02.0001
  76. Schluter, P. and Harris, S. 2006. Analysis of multilocus fingerprinting data sets containing missing data. Mol. Ecol. Notes 6:569-572. https://doi.org/10.1111/j.1471-8286.2006.01225.x
  77. Schmolke, M., Zimmermann, G., Schweizer, G., Miedaner, T., Korzun, V., Ebmeyer, E. and Hartl, L. 2008. Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breed. 127:459-464. https://doi.org/10.1111/j.1439-0523.2007.01486.x
  78. Schollenberger, M., Drochner, W. and Muller, H.-M. 2007. Fusarium toxins of the scirpentriol subgroup: a review. Mycopathologia 164:101-118. https://doi.org/10.1007/s11046-007-9036-5
  79. Schollenberger, M., Mueller, H. M., Ruefle, M., Suchy, S., Plank, S. and Drochner, W. 2006. Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43-52. https://doi.org/10.1007/s11046-005-0199-7
  80. Schroeder, H. W. and Christiansen, J. J. 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838.
  81. Schuster, R. and Ellner, F. M. 2008. Level of Fusarium infection in wheat spikelets related to location and number of inoculated spores. Mycotoxin Res. 24:80-87. https://doi.org/10.1007/BF02985285
  82. Sears, E. R. 1981. Transfer of alien genetic material to wheat. In: Wheat science today and tomorrow, eds. by L. T. Evan, W. J. Peacock, pp. 75-89. Cambridge University Press Cambridge.
  83. Shen, J., Ding, X., Liu, D., Ding, G., He, J., Li, X., Tang, F. and Chu, B. 2006. Intersimple sequence repeats (ISSR) molecular fingerprinting markers for authenticating populations of Dendrobium officinale Kimura et Migo. Biol. Pharm. Bull. 29: 420-422. https://doi.org/10.1248/bpb.29.420
  84. Skinnes, H., Semagn, K., Tarkegne, Y., Maroy, A. G. and Bjornstad, A. 2010. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed. 129:149-155. https://doi.org/10.1111/j.1439-0523.2009.01731.x
  85. Snijders, C. H. A. and Kretching, C. F. 1992. Inhibition of deoxynivalenol translocation and fungal colonization in Fusarium head blight resistant wheat. Can. J. Bot. 70:1570-1576. https://doi.org/10.1139/b92-198
  86. Snijders, C. H. A. and Perkowski, J. 1990. Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology 80:566-570. https://doi.org/10.1094/Phyto-80-566
  87. Srinivasachary, Gosman, N., Steed, A., Hollins, T. W., Bayles, R., Jennings, P. and Nicholson, P. 2009. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 118:695-702. https://doi.org/10.1007/s00122-008-0930-0
  88. Stenglein, S. A. 2009. Fusarium poae: a pathogen that needs more attention. J. Plant Pathol. 91:25-36.
  89. Stepien, L., Mohler, V., Bocianowski, J. and Koczyk, G. 2007. Assessing genetic diversity of Polish wheat (Triticum aestivum) varieties using microsatellite markers. Genet. Res. Crop Evol. 54:1499-1506. https://doi.org/10.1007/s10722-006-9140-2
  90. Stepien, L., Popiel, D., Koczyk, G. and Chellkowski, J. 2008. Wheat-infecting Fusarium species in Poland-their chemotypes and frequencies revealed by PCR assay. J. Appl. Genet. 49:433-441. https://doi.org/10.1007/BF03195644
  91. Tamburic-Ilincic, L., Falk, D. and Schaafsma, A. 2011. Fusarium ratings in Ontario Winter Wheat Performance Trial (OWWPT) using an index that combines Fusarium head blight symptoms and deoxynivalenol levels. Czech. J. Genet. Plant Breed. 47:S115-S122.
  92. Tams, S. H., Bauer, E., Oettler, G. and Melchinger, A. E. 2004. Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor. Appl. Genet. 108:1385-1391. https://doi.org/10.1007/s00122-003-1552-1
  93. Thomas, K. and Bebeli, P. 2010. Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol. Phylogenet. Evol. 56:951-961. https://doi.org/10.1016/j.ympev.2010.04.041
  94. Thrane, U., Adler, A., Clasen, P.-E., Galvano, F., Langseth, W., Lew, H., Logrieco, A., Nielsen, K. F. and Ritieni, A. 2004. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int. J. Food Microbiol. 95:257-266. https://doi.org/10.1016/j.ijfoodmicro.2003.12.005
  95. Toth, B., Kaszonyi, G., Bartok, T., Varga, J. and Mesterhazy, A. 2008. Common resistance of wheat to members of the Fusarium graminearum species complex and F. culmorum. Plant Breed. 127:1-8. https://doi.org/10.1111/j.1439-0523.2008.01412.x
  96. van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R. and Visser, B. 2010. Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theor. Appl. Genet. 120:1241-1252. https://doi.org/10.1007/s00122-009-1252-6
  97. Van Ginkel, M. and Gilchrist, L. 2002. How to make intelligent crosses to accumulate Fusarium head blight resistance genes based on knowledge of the underlying resistance mechanisms. In: Proceedings of the 2002 National Fusarium Head Blight Forum, ed. by Canty, S. M. et al. pp. 268-272. Erlanger, KY. 7-9 Dec. 2002, Michigan State University, East Lansing. MI, USA.
  98. Vogelgsang, S., Sulyok, M., Hecker, A., Jenny, E., Krska, R., Schuhmacher, R. and Forrer, H.-R. 2008. Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. Eur. J. Plant Pathol. 122:265-276. https://doi.org/10.1007/s10658-008-9279-0
  99. Voss, H.-H., Holzapfel, J., Hartl, L., Korzun, V., Rabenstein, F., Ebmeyer, E., Coester, H., Kempf, H. and Miedaner, T. 2008. Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed. 127:333-339. https://doi.org/10.1111/j.1439-0523.2008.01518.x
  100. Wang, Y. Z. and Miller, J. D. 1988. Screening techniques and sources of resistance to Fusarium head blight. In: Wheat production constraints in tropical environments, ed. by A. R. Klatt, pp. 239-250. CIMMYT, Mexico, DF.
  101. Wisniewska, H. and Kowalczyk, K. 2005. Resistance of cultivars and breeding lines of spring wheat to Fusarium culmorum and powdery mildew. J. Appl. Genet. 46:35-40.
  102. Würschum, T., Langer, S. M., Longin, F. H., Korzun, V., Akhunov, E., Ebmeyer, E., Schachschneider, R., Schacht, J., Kazman, E. and Reif, J. C. 2013. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor. Appl. Genet. 126:1477-1486. https://doi.org/10.1007/s00122-013-2065-1
  103. Xu, X. M., Monger, W., Ritieni, A. and Nicholson, P. 2007. Effect of temperature and duration of wetness during initial infection periods on disease development, fungal biomass and mycotoxin concentrations on wheat inoculated with single, or combinations of, Fusarium species. Plant Pathol. 56:943-956. https://doi.org/10.1111/j.1365-3059.2007.01650.x
  104. Yan, W., Li, H. B., Cai, S. B., Ma, H. X., Rebetzke, G. J. and Liu, C. J. 2011. Effects of plant height on type I and type II resistance to Fusarium head blight in wheat. Plant Pathol. 60:506-512. https://doi.org/10.1111/j.1365-3059.2011.02426.x
  105. Zeb, B., Khan, I. A., Ali, S., Bacha, S., Mumtaz, S. and Swati, Z. A. 2009. Study on genetic diversity in Pakistani wheat varieties using simple sequence repeat (SSR) markers. Afr. J. Biotechnol. 8:4016-4019.
  106. Zhang, L. Y., Liu, D. C., Guo, X. L., Yang, W. L., Sun, J. Z., Wang, D. W., Sourdille, P. and Zhang, A. M. 2011. Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC genetics 12:42.

Cited by

  1. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry vol.8, pp.12, 2016, https://doi.org/10.3390/toxins8120370
  2. Intraspecific Polymorphisms of Cytogenetic Markers Mapped on Chromosomes of Triticum polonicum L. vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0158883