• Title/Summary/Keyword: nitrogen-fixation

Search Result 267, Processing Time 0.023 seconds

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -IV. Chemotaxis of Associative N2-fixing Bacteria to Single or Combined Sugars and Root Exudates (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제사보(第四報). 협생질소고정균(協生窒素固定菌)의 단당(單糖) 및 복합당류(複合糖類)와 근분비물질(根分泌物質)에 대(對)한 화학주화성(化學走化性))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Ko, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.359-367
    • /
    • 1987
  • A method for evaluating bacterial chemotactic responses toward several single of combined sugars and sterile mucilage from the different rice cultivars had been tested. Bacterial genus of Azospirillum, Pseudomonas and Agrobacterium were specially identified from the histosphere of different rice cultivars and graminea grasses in saline and reclaimed saline paddy soil. To evaluate chemotaxis of these strains a modification of Fendrik channel method was used. Under this condition Azospirillum lipoferum Ecc 3-1 reacted stereoisomerically fomulating the single migration ring while Agrobacterium radiobacter Ecc 1-1 and Pseudomonas sp Ecc 4-1 did not. Strains specificities of chemotaxis to the single sugar such as D(+)-glucose and D(+)-fructose were less prominent than malic and citric acid. Chemotactic responses to the combined sugar such as D-galacturonic acid and the L-aspartate were found high attracting reaction than other combined sugars. Chemotaxis of associative $N_2$-fixing bacteria to the root exudates of different rice cultivars were differed among bacterial strains and rice cultivars.

  • PDF

Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse (미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향)

  • Ryu, Il-Hwan;Jeong, Su-Ji;Han, Seong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

Plant Growth-Promoting Activity Characteristics of Bacillus Strains in the Rhizosphere (근권에 존재하는 Bacillus 속 균주들의 식물 생장 촉진 활성 특성)

  • Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Song Min;Kim, Hee Sook;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.403-412
    • /
    • 2021
  • This study aimed to identify plant growth-promoting activity, phytopathogenic fungi growth inhibitory activity, mineral solubilization ability, and extracellular enzyme activity of the genus Bacillus in soil and the rhizosphere. With regards to antifungal activity against phytopathogenic fungi, DDP257 showed antifungal activity against all 10 pathogenic fungi tested. ANG20 showed the highest ability to produce indole-3-acetic acid, a plant growth-promoting factor (70.97 ㎍/ml). In addition, 10 species were identified to have 1-aminocyclopropane-1-carboxylate deaminase production ability, and most isolates showed nitrogen fixation and siderophore production abilities. Thereafter, the isolated strains' ability to solubilize minerals such as phosphate, calcite, and zinc was identified. With extracellular enzyme activity, the activity appeared in most enzymes. In particular, all the strains showed similar abilities for alkaline phosphatase, esterase (C4), acid phosphatase, and naphtol-AS-BI-phosphohydrolase production. This result was observed because the genus Bacillus secreted various organic substances, antibiotics, and extracellular enzymes. Therefore, through the results of this study, we suggest the possibility of using strains contributing to the improvement of the soil environment as microbial agents.

Characterization of Potential Plant Growth-promoting Rhizobacteria as Biological Agents with Antifungal Activity, Plant Growth-promoting Activity, and Mineral Solubilizing Activity (항진균 활성, 식물 생장촉진 활성, 미네랄 가용화능을 가진 생물학적 제제로서 잠재적 식물 생장촉진 근권세균의 특성조사)

  • Lee, Song Min;Kim, Ji-Youn;Kim, Hee Sook;Oh, Ka-Yoon;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.641-653
    • /
    • 2021
  • The purpose of this study was to confirm the antifungal activity, plant growth-promoting activity, and mineral solubilizing activity of 18 types of bacteria isolated purely from rhizosphere soil. The potential of isolates of the genus Bacillus and Pseudomonas as biocontrol agents was confirmed through the antifungal activity of these isolates. This activity has been determined to be due to various hydrolytic enzymes on the cell wall of plant pathogenic fungi and the production of siderophores in isolates. In addition, most of the isolates have been found to have aminocyclopropane-1-carboxylate deaminase production activity, indole-3-acetic acid production activity, and nitrogen fixation activity. These characteristics are believed to have a positive effect on root development, growth, and the productivity of crops via a reduction in the concentration of ethylene under conditions of environmental stress, to which plants are commonly exposed. In addition, on testing for the solubilizing activity of the isolates for phosphoric acid, silicon, calcium carbonate, and zinc, some isolates were found to have mineral solubilizing activities. Inoculation of these isolates during plant growth is expected to assist plant growth by converting nutrients necessary for growth into usable forms that can be absorbed by plants. The 18 isolated strains can be used as biocontrol agents due to their antifungal activity, plant growthpromoting activity, and mineral solubilizing activity.

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.

Isolation and Characterization of Plant Growth Promoting Bacteria Pseudomonas sp. SH-26 from Peat Soil (이탄 토양으로부터 식물생육촉진세균 Pseudomonas sp. SH-26의 분리 및 특성)

  • Ho-Young Shin;Da-Son Kim;Chang-Ho Lee;Dong-Soek Lee;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.199-207
    • /
    • 2024
  • We conducted to investigate both plant growth-promoting and plant disease-controlling activities of bacterial strains isolated from soil. Among the 48 isolated strains, SH-23, SH-26, SH-29, and SH-33 were identified as excellent strains for the production of β-glucosidase, cellulase, amylase, and protease. These 4 strains exhibited antifungal activity against plant pathogenic fungi (Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Colletotrichum acutatum). Strain SH-26, which exhibited excellent organic matter decomposition and antifungal activity against plant pathogenic fungi, was selected as the final superior strain. Upon determining the 16S rRNA gene sequence of the selected SH-26 strain, it exhibited 100% similarity with Pseudomonas knackmussii HG322950 B13T, Pseudomonas citronellolis BCZY01000096 NBRC 103043T, and Pseudomonas delhiensis jgi.1118306 RLD-1T. Furthermore, it was confirmed that the Pseudomonas sp. SH-26 exhibited siderophore production, nitrogen fixation ability, and the production of Indole-3-acetic acid.

Characteristics of Indigenous Rhizobium to Korean Soils -II. Symbiotic and Serological Characteristics of Bradyrhizobium japonicum Naturalized in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구 -II. 영남지역(嶺南地域) 토착(土着) Bradyrhizobium japonicum의 공생(共生) 및 혈청학적(血淸學的) 특성(特性))

  • Kang, Ui-Gum;Jung, Yeun-Tae;Somasegaran, Padma;Hoben, H.;Bohlool, B. Ben
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Thirty Bradyrhizobium japonicum isolates (10 strains per each soil) from 1 uncultivated [Sangnam(Soil 1), Milyang]- and 2 cultivated [Dong(Soil 2)and Chinbuk(Soil 3), Changweon] upland soils in Yeongnam area were evaluated on their symbiotic effectiveness to soybean [Glycin max (L.)] cv. Korean Jangbaekkong and American Clark and examined on their serological diversity. The results obtained were summarized as follows : 1. On symbiotic effectiveness of B. japonicum with plant genotypes, isolates showed a relatively high value of nodule mass in Jangbaekkong cv. and of shoot dry weight and total nitrogen in Clark cv. demonstrating the order of Soil 1> Soil 2> Soil 3 isolates. 2. Among 30 B. japonicum isolates, YCK 141 showed the best effectiveness on mean nitrogen fixation of two cultivars. 3. Thirty indigenous B. japonicum showed 6 types of serological diversities in the immunoblot analysis which were present in various proportions at Soil 2(5) and Soil 3(5) except Soil 1 where all isolates fell into the YCK 117 serogroup. And their distribution order was serotype YCK 117( 12 strains) > USDA 1l0(5strains), USDA 123(5 strains) > YCK 150(4 strains) > YCK 141(3 strains) > YCK 226(1 strain). 4. Especially, 10 isolates from Soil 1, an uncultivated orchard, showed a very homologous pattern in not only effectiveness but serological distribution. It seemed to indicate that the isolates were typically affected by numerous physical and environmental factors of the soil.

  • PDF

Effects of Barley Straw on the Biochemical Properties in the Submerged Soil (보릿짚시용(施用)이 논토양(土壤)의 생화학성(生化學性)에 미치는 영향(影響))

  • Chung, Chi-Ho;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • To investigate the effects of barley straw on microflora, acetylene reducing activity, enzyme activity and sugar in relation to nitrogen fixation in submerged soil. The obtained results were summarized as follow: Of the nitrogen fixing microorganisms, the number of Azotobactor tended to increase with the application of barley straw as the rice grew. The number of Clostridia were increased at the tillering stage of plant and decreased thereafter, and that of Blue-green algae tended to increase at the heading stage and to decrease thereafter. On the other hand, the number of Blue-green algae tended to increase by the application of barley straw. Acetylene reducing activity was decreased in the heading stage and increased in the harvesting stage. There was no difference of acetylene reducing activity between the application of barley straw and control. In submerged soil treated with barley straw, enzyme activity of ${\beta}$-glucosidase was increaded significantly but that of phosphatase was not entirely affected. Of the change of enzyme activity, the observation of ${\beta}$-glucosidase was increased at the heading stage and decreased thereafter, and the activity of phosphatase tended to decrease in the submerged soil when rice plants were not cultured and to increase in the submerged soil when rice plants were cultured. Protease tended to increase in the heading stage and increase in the tillering stage and heading stage with the application of barley straw. The change of sugar was decreased and hexose was increased in the tillering stage with the application of barley straw.

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -III. Symbiotic Effectiveness and Nitrate Reductase Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)III보(報) 토착대두근류균(土着大豆根瘤菌)의 질소고정효율 및 Nitrate reductase 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Sang-Kyu;Park, Jun-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 1987
  • In order to improve effectiveness of rhizobia- legume symbiotic nitrogen fixation, ecological and physiological characteristics of indigenous rhizobia distributed in Korea, that is, symbiotic effectiveness of indigenous soybean rhizobia, nitrate reductase activities of the soybean bacteroid from five different soils, and differences of host-infection abilities among the soybean cultivars under population densities of the same indigenous soybean rhizobia, were investigated. The results were summarized as follows: 1. The number of indigenous soybean rhizobia was ranged from $9.2{\times}10^2$ cells per gram of soil in calcareous soil II to $42.4{\times}10^3$ cells per gram of soil in calcareous soil I in Danyang. 2. The symbiotic effectiveness of indigenous soybean rhizobia from five different soils was high in the case of soybean continuously cultivated, and calcareous soil I that population densities of indigenous soybean rhizobia were observed highly. 3. Inverse relationship was observed between total nitrogenase activity (TNA) and nitrate reductase activity (NRA) from the soybean bacteroids ($r=-0.502^*$), but the correlation between nitrate reductase and specific nitrogenase activities (SNA) could be devided into two groups. It was classified into group I which is high in SNA and low in NRA, and group II which is low in SNA and high in NRA. 4. The infection ability of the indigenous soybean rhizobia in the same soil conditions showed the reciprocal difference among each soybean cultivars. In Kwangkyo and Jangyeup, the symbiotic effectiveness appeared by infection of indigenous soybean rhizobia was higher than it of the other soybean cultivars.

  • PDF