• Title/Summary/Keyword: nitrogen recovery

Search Result 343, Processing Time 0.106 seconds

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Increased Salinity Tolerance of Cowpea Plants by Dual Inoculation of an Arbuscular Mycorrhizal Fungus Glomus clarum and a Nitrogen-fixer Azospirillum brasilense

  • Rabie, G.H.;Aboul-Nasr, M.B.;Al-Humiany, A.
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • Pot greenhouse experiments were carried out to attempt to increase the salinity tolerance of one of the most popular legume of the world; cowpea; by using dual inoculation of an Am fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. The effect of these beneficial microbes, as single- or dual inoculation-treatments, was assessed in sterilized loamy sand soil at five NaCl levels ($0.0{\sim}7.\;2ds/m$) in irrigating water. The results of this study revealed that percentage of mycorrhizal infection, plant height, dry weight, nodule number, protein content, nitrogenase and phosphatase activities, as well as nutrient elements N, P, K, Ca, Mg were significantly decreased by increasing salinity level in non-mycorrhized plants in absence of NFB. Plants inoculated with NFB showed higher nodule numbers, protein content, nitrogen concentration and nitrogenase activities than those of non-inoculated at all salinity levels. Mycorrhized plants exhibited better improvement in all measurements than that of non-mycorrhized ones at all salinity levels, especially, in the presence of NFB. The concentration of $Na^+$ was significantly accumulated in cowpea plants by rising salinity except in shoots of mycorrhizal plants which had $K^+/Na^+$ ratios higher than other treatments. This study indicated that dual inoculation with Am fungi and N-fixer Azospirillum can support both needs for N and P, excess of NaCl and will be useful in terms of soil recovery in saline area.

The Effect of Maternal Dietary Restriction on the Growth and Development of Offsprings (식이제한(食餌制限)이 후손(後孫)의 성장발달(成長發達)에 미치는 영향(影響))

  • Kim, Hyun-Sook;Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1969
  • Thirty female and six male rats aged fourty days were divided into two groups in order to feed them by pairfeeding for 50% dietary restriction in the pair group two weeks interval. Each group contains 15 female and three male rats matched each rat between two groups in consideration of body weight. Two female groups, one fed by 50% restricted diet and other Ad Libitum were divided into four groups each by the duration of dietary restriction during pregnancy: First ten days dietary restriction at 50% level, Last ten days dietary restriction at 50% level, Dietary restriction at 50% level for full period, And dietary unrestriction for full period Urinary total nitrogen and creatinine were determined. The birth weights of offsprings were decreased partial and full period dietary restriction of pregnant rats. There was no significant difference in the litter size of progeny due to the maternal diets. The growth was stunted in offsprings from the mothers fed restricted diet at 50% level for full period of pregnancy. No effect in the body weight gain of offsprings was observed in account of partial period of maternal dietary restriction. The urinary nitrogen of offsprings from eight different groups did not show any statistically significant difference.

  • PDF

Effect of Nitrogen Fertilization on Growth, Dry Matter Yield and Nitrogen Use of Orchardgrass (질소기비에 대한 Orchardgrass의 생육 및 수량반응과 질소이용성)

  • 윤진일;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.3
    • /
    • pp.257-262
    • /
    • 1981
  • Field experiment with 0, 100, 200, 400, and 800 kg-N/ha-year application levels was carried out to study the nitrogen response in the early stage of orchardgrass pasture establishment at College Fann, SNU, in 1979 and 1980. Both the highest dry matter yield and maximum percent of N recovery were obtained at the same level of 200 kg-N/ha in the year of seeding. but those of the next year were obtained at 400 kg-N/ha level. Leaf area indices (LAI) and net assimilation rates (NAR) during each regrowth periods as well as total nitrogen contents of forage at each cutting time increased with applied N in both years. The maximum crop growth rate (CGR) over two years was estimated to be obtained when LAI reached to about 5. The accumulation of NO_3 -N in forage started from 400kgㆍN/ha application in 1980. and exceeded the safe level for ruminants at the level of 800 kg-N/ha.

  • PDF

Analysis of Acrylamide in Mainstream Cigarette Smoke and Effects of Total Nitrogen and Reducing Sugars on Acrylamide Content

  • Kim, Ick-Joong;Lee, John-Tae;Min, Hye-Jeong;Kim, Hyo-Keun;Hwang, Keun-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • Acrylamide has been found in many foods. Acrylamide in foodstuffs were analyzed by a GC/MS after bromination of acrylamide or by a LC/MS for underivatized acylamide. Time consuming and laborious clean up procedures is applied for the purification of the extract, in these methods. In this study, a simple and fast method without clean up step for the analysis of acrylamide in mainstream cigarette smoke was developed by using liquid chromatography-tandem mass spectrometry (LC/MS/MS) and the effects of tobacco leaf constituents on acrylamide content was observed. The analysis of acrylamide in mainstream cigarette smoke started to collect TPM (total particulate matter) from smoking and to extract by 0.1 % acetic acid solution and then to detect by liquid chromatography tandem mass spectrometry using electrospray in the positive mode. The recovery of acrylamide in 2R4F reference cigarette was 98 % and the reproducibility was 2.5 % and the limit of detection was 1.6 ng/mL. Reducing sugars and amino acids are considered to be main precursors of acrylamide in foodstuffs. Cut tobacco contain substantial amounts of reducing sugars and amino acid which may be explained the occurrence of acrylamide in mainstream cigarette smoke. The effects of reducing sugars and total nitrogen studied in an experiment with a various tobacco types. This result indicated that reducing sugars are not limiting factor for acrylamide formation, but the level of acrylamide in cigarette smoke was significantly correlated with the total nitrogen contents.

Analysis on the Performance and the Emission of the Integrated Gasification Combined Cycle Using Heavy Oil (중잔사유 가스화 복합발전 사이클의 성능 및 환경배출 해석)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • The process simulations are made on the IGCC power plant using heavy residue oil from refinery process. In order to model combined power block of IGCC, the present study employs the gas turbine of MS7001FA model integrated with ASU (Air Separation Unit), and considers the air extraction from gas turbine and the combustor dilution by returned nitrogen from ASU. The exhaust gas energy of gas turbine is recovered through the bottoming cycle with triple pressure HRSG (Heat Recovery Steam Generator). Clean syngas fuel of the gas turbine is assumed to be produced through Shell gasification of Visbreaker residue oil and Sulfinol-SCOT-Claus gas cleanup processes. The process optimization results show that the best efficiency of IGCC plant is achieved at 20% air extraction condition in the case without nitrogen dilution of gas turbine combustor find at the 40% with nitrogen dilution. Nitrogen dilution of combustor has very favorable and remarkable effect in reducing NOx emission level, while shifting the operation point of gas turbine to near surge point.

  • PDF

Amino acids in Embryo and Endosperm of Brown Rice different in Specific Gravity (비중선별(比重選別) 현미(玄米)의 배아(胚芽) 및 배유중(胚乳中) 아미노산(酸) 함량(含量))

  • Park, Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.12-16
    • /
    • 1974
  • The amino acid pattern of embryo and endosperm of brown rice different in specific gravity was investigated using Jinheung (local leading temperate variety) and IR667-Suweon 213 (high-yielding newly bred tropical variety). 1. Embryo of IR667 (higher protein rice) showed lower protein, and lower lysine or essential amino acid per protein than that of Jinheung (lower protein rice). 2. In both embryo and endosperm nitrogen recovery as amino acids was highest in middle class of specific gravity and lowest in low class indicating that abundancy of non-protein nitrogen in low class and decomposition of amino acids by starch in high specific gravity class. 3. In both embryo and endosperm IR667 showed abundancy in order of glutamic acid, aspartic acid while Jinheung showed glutamic acid, arginine, suggesting varietal difference in nitrogen metabolism. 4. In both IR667 and Jinheung least amino acid was histidine and next leucine in embryo but histidine and next threonine in endosperm, suggesting organ difference in nitrogen metabolism.

  • PDF

Analysis of the current status and implications of nitrogen recovery from livestock manure (가축분뇨로부터 질소 회수 연구 현황 및 시사점 분석)

  • Im, Seongwon;Kim, Sangmi;Kim, Jimin;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.37-46
    • /
    • 2021
  • Nitrogen and phosphorus in livestock manure are environmental pollutants, but also could be valuable industrial resources. In the present study, we (1) introduced various nitrogen removal technologies such as stripping, thermal method, membrane, and electrodialysis, (2) reviewed relevant studies reported in 2011-2020, in particular, full-scale experiences, and (3) assessed each technologies based on the above survey results. In addition, we provided the information on the appropriate range of the pH, temperature, gas and liquid ratio, and so on in ammonia stripping process, and expected mass balance when it is connected to biogasification process. We hope the content herein can be helpful for making policy and operating full-scale plant in Korea.

Studies on the Factors Enhancing the Effects of Nitrogen Application of Rice Culture in Korea (수도작(水稻作)에서 시용질소효과 증대요인의 해석적(解析的) 연구)

  • Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.131-155
    • /
    • 1983
  • Though it has been widely known the nitrogen effects are influenced by soils, varieties, and mineral nutrients in the rice culture, few analyses in relation to the factors increasing nitrogen effect have been studied in Korea. The effects of potassium and silica on the factors increasing nitrogen effects in paddy soils were investigated in accordance with soil improvement practices and nitrogen application methods for the cultivated varieties. The results obtained are as follows. 1. For 413 paddy fields, the yield from soils without nitrogen application ranged from 200 to 850kg/10a and that from nitrogen application did 350 to 1,051kg/10a. The yield increament by nitrogen application varied 50 to 650kg/10a depending on soils. 2. Soil chemical characteristics for high yield were different between with nitrogen and without nitrogen application. In the without nitrogen application, however, contents of organic matter, phosphorous, potassium and calcium of high yield soils were lower than those of low yield, while the available silica content was higher in the former. 3. The yield increased with nitrogen application up to 22.4kg/10a and thereafter it decreased. These phenomena were supposed to be not be decrease of nitrogen uptake but by lowered silica uptake. 4. Clay soil incorporation, deep plough, and inorganic constituents control such as Ca, Mg, and $Sio_2$ were effective as soil improvement praitices. It was appeared that increases of silica content and Ca/Mg ratio were important to increase nitrogen effects. 5. For the correlation between yield and yield components, it was high between yield and panicle in low nitrogen level and so was it between grain yield and ripening rate in high nitrogen. 6. In the urea and super granule urea application plot, recovery rate of nitrogen by plant and soil was high and yield was remarkable high. 7. Regardless of fertilizer types such as ammonium sulfate and urea, the residual nitrogen was about 4kg/10a in both plots of 5.8 and 11.6kg/10a. N applied. 8. The potassium application to soil enhanced the nitrogen efficiency. It was more effective in low potassium soil. 9. Optimum pH value for gel formation in the 4% sodium silicate solution was approximately 6.6. 10. It was suggested that silica could affect to rice plant growth as the inorganic and organic chemical components.

  • PDF

The Effect of Foliage Clipping on the Growth and the Agronomic Characteristics, as Affected by its Time, Degree, and Nitrogen Top-Dressing, in Rice plants (절엽의 시기 및 정도, 그리고 절엽 후의 시비가 수도의 생육 및 수량제형질의 변화에 미치는 영향)

  • Eun-Woong Lee;Yong-Woong Kwon;Pyeong-Ki Yim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 1968
  • To investigate the effects of foliage clipping time, degree, and nitrogen top-dressing after clipping on the growth and the agronomic characteristics, rice plants grown under ordinary cultural practices were clipped at the maximum tiller stage, 10 days prior to, and after that stage, respectively, with varying clipping, height, as 0, 1/3, 1/2, and 2/3 of plant height. And nitrogen was top-dressed at the rate of 0, 2, 4, 6 kg per 10 are immediately after clipping. The variety used was "Jinheung". The results obtained are outlined as follows: 1. Effect of clipping on the growth of rice plant: The subsequent growth was quite rapid during 10 days after clipping, and resulted, on the whole, in nearly complete recovery of defoliation by 20 days after clipping. a) Generally, the later the clipping time, the more growth accelerated. Rice plants clipped before the differentiation of ear primordia nearly recovered the damage, and in certain cases exceeded non-clipped plants in height. But the height of the rice plant clipped after the differentiation of ear primordia was somewhat smaller than that of non-clipped. b) Growth rate was rather rapid in the case of severe cutting, and the height of slightly clipped plants was taller than that of non-clipped plants. However, rice plants clipped to the extent of 2/3 of plant height did not fully recover the damage of defoliation compared to non-clipped plants. c) Nitrogen dressing was effective to rapid recovery of defoliation, the effect increasing with the increasing amount of application. d) Ear-heading was delayed in clipped plots, and this tendency was more apparent with later clipping time, more severe clipping, and increased amounts of nitrogen application after cutting. The range was 6 days at maximum. 2. Effect of defoliation on the yield and its components of rice plants: The yield response to clipping varied somewhat with its time, degree, and nitrogen application after cutting: yield increase of about 10% and decreasement of about 25% at maximum compared to the control plot. Grain yield of most plots was decreased. a) Clipping before the differentiation of ear primordia did not much affect the agronomic characteristics of rice plants. However, clipping after that growth stage decreased culm length, number of panicles, number of spikelets per panicle, and maturing rate of grain to some extent. Consequently this treatment resulted in decrease of about 10% in grain and straw production in spite of increase in panicle length and effective tillering rate. b) Slight, clipping decreased number of spikelets per panicle a little, and the yield of grain and straw by 4-5%, although effective tillering rate was somewhat increased. With severe clipping, panicle kngth, number of panicles, and number of spikelets per panicle decreased more, and the yield of grain and straw decreased about 10%. c) Nitrogen dressing after clipping at the rate of 2 kg per 10 are was effective in increasing grain yield. Nitrogen application over the rate of 4 kg per 10 are increased culm length, number of spikelets per panicle, and straw production, but this decreased the maturing rate, and the 1, 000-grains weight to some extent and resulted in decrease of grain yield.

  • PDF