• Title/Summary/Keyword: nitrogen rate

Search Result 3,138, Processing Time 0.03 seconds

Studies on the Growth and Nutrient Uptaking of Flag Leaf and Chaff of Rice Plant in Cold Injury Location II, Influence of Different Nitrogen and Silicate Application on the Nutrient Uptaking of Chaff in Rice Plant (냉해지대의 수도생육과 임, 불임인각의 양분흡수에 관한 연구 제3보 질소와 규산시용량의 차이가 인각의 양분흡수에 미치는 영향)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 1983
  • This experiment was conducted to study about influenced inorganic element contents of flag leaf and chaff with different nitrogen and silicate application in Jinan (sea level 303m). The recommended rate of fertilizer application above N 15kg/10a was poor for dry production increment in cold in July elevation and was demanded increment of silicate. In the elevation of cold in July high rates of nitrogen application produced more incomplete grain and a reduced cold tolerance. These effects were due to over-content of soluble nitrogen within flag leaf and disturbance of uptaking potassium and silicate. On the other hand, the application of silicate could increase yield by promoting resistance to cold- damage. The application of increasing level of nitrogen resulted in increasing the contents of total nitrogen and phosphate in both sterile and fertile glumes. The contents of potassium and calcium were the highest at the level of nitrogen 10 - 15kg/10a, but magnessium was rather high at low nitrogen levels. It is interesting that at any level of nitrogen, over 6% higher silicate contents were noted in the fertile chaff than in the sterile chaff. Application of increasing level of silicate fertilizer decreased total nitrogen contents, but increased the contents of phosphate, potassium. and silicate in the chaff. Increasing rate of silicate content by increasing silicate addition was remarkably higher in the fertile chaff than in the sterile chaff.

  • PDF

$N_2$Fixation and Partitioning of Nitrogen and Carbohydrate in White Clover as Affected by Defoliation Interval (예취주기가 White Clover의 질소고정과 질소 및 탄수화물 분배에 미치는 영향)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.26-32
    • /
    • 1995
  • Weak persistence of white clover (Trifolium repens L.) under continuous grazing has been limited its availability in the mixture with grasses. The experiment was done to determine the effect of defoliation interval on $N_2$ fixation. nitrogen and carbohydrate partitioning of contrasting white clover cultivars. Individual plants of Osceola(large leaf), Grasslands Huia (me-dium leaf), and Aberystwyth S184 (small leaf) were grown in 15cm plastic pot containing a 1:2:1 soil:sand:Promix mixture for 55 days, and then clipped to remove all fully expanded leaves every 7, 14 or 28 days. To measure the cultivar response, plants were sampled immediately before final harvest (0) and on 1, 3, 7, 14, and 28 days after the final harvest, and then seperated leaves and petioles, stolons and roots for chemical analysis. Total nonstructural carbohydrate (TNC) concentrations of stolons and roots, and nitrogen con-centration of all the fractions inclined with increased defoliation interval. Those of Osceola, large leaved, were greater than the other cultivars showing different partitioning patterns between stolons and roots. Concentration of TNC was less in roots than in the other fractions while that of nitrogen declined in the order of leaves and petioles, roots and stolons. $N_2$ fixation rate of larger leaved cultivar, Osceola, was higher than that of smaller leaved cultivar. TNC and nitrogen concentrations of all the fractions and $N_2$ fixation rate were reduced as defoliation was imposed, defoliation interval declined or regrowing period become shorter. The partitioning patterns of TNC and nitrogen among the fractions were modified by defoliation interval and cultivars.

  • PDF

Studies on the Digestion of Beef by Ficin Treatment (Ficin 처리 우육의 소화에 관한 연구)

  • Kim, Jung-Sook;Kim, Jun-Pyong
    • Applied Biological Chemistry
    • /
    • v.30 no.3
    • /
    • pp.210-218
    • /
    • 1987
  • In the previous report, we isolated and purified one of tendering enzyme 'ficin' from fig latex. In this study, various crude ficin concentrations and reaction time were employed to investigate the contents of free amino acids and other free nitrogen compounds after the treated with beef round muscle. 1. Free amino acids contents increased with the increase of temperature and time during the aging of beef at $1^{\circ}C$ and $8^{\circ}C$, and the increasing rate was remarkably high when fresh beef was treated with ficin. In the case of ficin treatment after various cooking, steaming showed the highest increase in free amino acid contents among three cooking methods such as boiling, steaming and pan broiling. The increased amounts of free amino acids in three groups-aging beef at $1^{\circ}C$ for 3 days, fresh beef treated with ficin(0.1%, 2hrs) and beef treated with ficin(0.1%, 2hrs) after cooking were 13%, 293% and 137% respectively. In contrast to aging group, the amount of free amino acids in other two groups treated with ficin was superiorly increased. 2. The amounts of total free nitrogen, free non-protein nitrogen and $NH_3-nitrogen$ increased with the increase of temperature and time during the aging of beef at $1^{\circ}C$ and $8^{\circ}C$, and the increasing rate was remarkably high in fresh beef treated with ficin. In the case of ficin treatment after cooking, steaming gave larger amount of total and non-protein nitrogen than other two cooking, e.g. boiling and panbroiling. The increasing rate of nonprotein nitrogen to the total nitrogen of fresh beef treated with ficin(0.1%, 2hrs) was 75 times greater than that of aging fresh beef at $1^{\circ}C$ for 3 days.

  • PDF

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Nitrogen Removal Comparison in Porous Ceramic Media Packed-Bed Reactors by a Consecutive Nitrification and Denitrification Process

  • Han, Gee-Bong;Woo, Mi-Hee
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2011
  • Biological nitrogen removal, using a continuous flow packed-bed reactor (CPBR) in a consecutive nitrification and denitrification process, was evaluated. An apparent decline in the nitrification efficiency coincided with the steady increase in $NH_4{^+}$-N load. Sustained nitrification efficiency was found to be higher at longer empty bed contact times (EBCTs). The relationship between the rate of alkalinity consumption and $NH_4{^+}$-N utilization ratio followed zero-order reaction kinetics. The heterotrophic denitrification rate at a carbon-tonitrogen (C/N) ratio of >4 was found to be >74%. This rate was higher by a factor of 8.5 or 8.9 for $NO_3{^-}$-N/volatile solids (VS)/day or $NO_3{^-}-N/m^3$ ceramic media/day, respectively, relative to the rates measured at a C/N ratio of 1.1. Autotrophic denitrification efficiencies were 80-90%. It corresponds to an average denitrification rate of 0.96 kg $NO_3{^-}-N/m^3$ ceramic media/day and a relevant average denitrification rate of 0.28 g $NO_3{^-}$-N/g VS/day, were also obtained. Results presented here also constitute the usability of an innovative porous sulfur ceramic media. This enhanced the dissolution rate of elemental sulfur via a higher contact surface area.

Oxygen Transfer Rate Coefficient of Membrane Aeration Bioreactor for Vero Cell Culture

  • Jeon, Ju-Mi;Jeong, Yeon-Ho;Kim, Ik-Hwan;Lee, Sang-Jong;Jang, Yong-Geun;Jeon, Gye-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.269-270
    • /
    • 2002
  • Oxygen is a key substrate in animal cell metabolism and its consumption is thus a parameter of great interest for monitoring and control in animal cell culture bioreactor. The use of a gas-permeable membrane offered the possibility to provide the required quantity of oxygen into the culture. while avoiding problems of foaming or shear damage generally linked to sparging. For determining the optimum DO control strategy of this gas-permeable membrane aeration bioreactor, the oxygen transfer rate coefficient was measured with varying $N_2$ ratio in inlet air. The results showed that an increasing mass flow rate of nitrogen reduced the $K_La$ value. and 5% nitrogen in air did not result in any oxygen limitation.

  • PDF

On the Decay Rate of Soil Organic Matter and Changes of Soil Microbial populaiton (토양유기물의 분해속도와 Microbial populaiton의 소장에 관한 연구)

  • 김춘민
    • Journal of Plant Biology
    • /
    • v.10 no.1_2
    • /
    • pp.21-30
    • /
    • 1967
  • The aim of present study is to elucidate the relationship between decay rate of soil organic matter, and the change of soil microbial population under the oak and pine forest soils in Kwang-nung plantation stand. The results obtained are as follows: 1) The correlation coefficient between decay rate and the soil bacteria is 0.84 and fungi 0.93. 2) The distribution of soil microbial population is higher in both F horizon of the oak forest soil, and F and H horizon of the pine forest soil. However, the number of soil microorganisms decreases with the depth in each forest soil. 3) The population of soil microbes is related to moisture content, total nitrogen, available phosphorus, and exchangeable calcium, except organic carbon in fungi. 4) The soil organic matter has been mainly decomposed by fungi, and the size of its population are governed by the factors such as moisture content, organic carbon, total nitrogen, available phosphorus, and exchangeable calcium.

  • PDF

Agronomic Characters and Soil Nitrogen Dynamics Influenced by Barley Straw Mulch Rates in No-Tillage Direct Seeding Rice Culture

  • Choi, Min-Gyu;Kang, Si-Yong;Kim, Sang-Su;Cheong, Jin-il;Shin, Hyun-Tak;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.191-196
    • /
    • 1999
  • In rice-barley cropping systems, efficient utilization of barley straw is essential, both to improve the soil fertility and to conserve the environment. In order to identify the effects of barley straw mulch rates in rice cultivation, a rice cultivar, 'Gancheogbyeo', was directly seeded on a no-tillage field synchronized with barley harvesting with five barley straw mulch rates, i.e., 0, 2.5, 5.0, 7.5 and 10.0 ton h $a^{-1}$ and agronomic characters of rice and soil nitrogen were determined. The increasing of barley straw mulch rates. Dominant weed species, chestnut, occurred in large amounts in no mulching or lower mulch rates than in higher mulch rates. The content of N $H_4$$_{+}$-N in soil applied with high barley straw mulch rates was lower during the month after seeding, and then it was higher at heading date, compared with lower mulch rates or no mulch plot. As the barley straw rate increased, maximum tillering stage was delayed, and plant height was reduced. Although the lodging of rice plants was seldom observed in all plots, the breaking strength of the culm was significantly higher in the mulch rate of 10.0 ton h $a^{-1}$ . With an increase of barley straw mulch rate, the effective tillering rate and spikelet number $m^{-2}$ decreased while ripened grain ratio increased. The rice grain yield was slightly decreased with an increase of barley straw mulch rate, although significant differences were not found all barley straw mulch rates. These results suggest that there is no significant yield loss although the total barley straw production, approximately 5.0 ton h $a^{-l}$ in the present study, apply in the paddy for the following rice cultivation by no-tillage direct seeding.ect seeding.

  • PDF

Bioaugmentation Treatment of Mature Landfill Leachate by New Isolated Ammonia Nitrogen and Humic Acid Resistant Microorganism

  • Yu, Dahai;Yang, Jiyu;Teng, Fei;Feng, Lili;Fang, Xuexun;Ren, Hejun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.987-997
    • /
    • 2014
  • The mature landfill leachate, which is characterized by a high concentration of ammonia nitrogen ($NH_3$-N) and humic acid (HA), poses a challenge to biotreatment methods, due to the constituent toxicity and low biodegradable fraction of the organics. In this study, we applied bioaugmentation technology in landfill leachate degradation by introducing a domesticated $NH_3$-N and HA resistant bacteria strain, which was identified as Bacillus cereus (abbreviated as B. cereus Jlu) and Enterococcus casseliflavus (abbreviated as E. casseliflavus Jlu), respectively. The isolated strains exhibited excellent tolerant ability for $NH_3$-N and HA and they could also greatly improved the COD (chemical oxygen demand), $NH_3$-N and HA removal rate, and efficiency of bioaugmentation degradation of landfill leachate. Only 3 days was required for the domesticated bacteria to remove about 70.0% COD, compared with 9 days' degradation for the undomesticated (autochthonous) bacteria to obtain a similar removal rate. An orthogonal array was then used to further improve the COD and $NH_3$-N removal rate. Under the optimum condition, the COD removal rate in leachate by using E. casseliflavus Jlu and B. cereus Jlu increased to 86.0% and 90.0%, respectively after, 2 days of degradation. The simultaneous removal of $NH_3$-N and HA with more than 50% and 40% removal rate in leachate by employing the sole screened strain was first observed.

High-rate Denitrifying Process Based on Methanol and Characteristics of Organic Carbon Uptake (메탄올 기반 탈질 공정의 고속화 및 탄소 섭취 특성)

  • Park, Suin;Jeon, Junbeom;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.581-591
    • /
    • 2020
  • In this study, two types of reactors were operated to examine the properties of methanol uptake under the high-rate denitrification process. In a sequencing batch reactor, the denitrifying activity was enriched up to 0.80 g-N/g-VSS-day for 72 days. Then, the enriched denitrifying sludge was transferred to a completely stirred tank reactor (CSTR). At the final phase on Day 46-50, the nitrogen removal efficiency was around 100% and the total nitrogen removal rate reached 0.097±0.003 kg-N/㎥-day. During the continuous process, the sludge settling index (SVI30) was stabilized as 118.3 mL/g with the biomass concentration of 1,607 mg/L. The continuous denitrifying process was accelerated by using a sequencing batch reactor (SBR) with a total nitrogen removal rate of 0.403±0.029 kg-N/㎥-day with a high biomass concentration of 8,433 mg-VSS/L. Because the reactor was open to ambient air with the dissolved oxygen range of 0.2-0.5 mg-O2/L, an increased organic carbon requirement of 5.58±0.70 COD/NO3--N was shown for the SBR in comparison to the value of 4.13±0.94 for the test of the same biomass in a completely anaerobic batch reactor. The molecular analysis based on the 16S rRNA gene showed that Methyloversatilis discipulorum and Hyphomicrobium zavarzinii were the responsible denitrifiers with the sole organic carbon source of methanol.