Browse > Article
http://dx.doi.org/10.4491/eer.2011.16.4.231

Nitrogen Removal Comparison in Porous Ceramic Media Packed-Bed Reactors by a Consecutive Nitrification and Denitrification Process  

Han, Gee-Bong (Department of Biosciences & Environmental Engineering, The Catholic University of Korea)
Woo, Mi-Hee (Department of Biosciences & Environmental Engineering, The Catholic University of Korea)
Publication Information
Environmental Engineering Research / v.16, no.4, 2011 , pp. 231-236 More about this Journal
Abstract
Biological nitrogen removal, using a continuous flow packed-bed reactor (CPBR) in a consecutive nitrification and denitrification process, was evaluated. An apparent decline in the nitrification efficiency coincided with the steady increase in $NH_4{^+}$-N load. Sustained nitrification efficiency was found to be higher at longer empty bed contact times (EBCTs). The relationship between the rate of alkalinity consumption and $NH_4{^+}$-N utilization ratio followed zero-order reaction kinetics. The heterotrophic denitrification rate at a carbon-tonitrogen (C/N) ratio of >4 was found to be >74%. This rate was higher by a factor of 8.5 or 8.9 for $NO_3{^-}$-N/volatile solids (VS)/day or $NO_3{^-}-N/m^3$ ceramic media/day, respectively, relative to the rates measured at a C/N ratio of 1.1. Autotrophic denitrification efficiencies were 80-90%. It corresponds to an average denitrification rate of 0.96 kg $NO_3{^-}-N/m^3$ ceramic media/day and a relevant average denitrification rate of 0.28 g $NO_3{^-}$-N/g VS/day, were also obtained. Results presented here also constitute the usability of an innovative porous sulfur ceramic media. This enhanced the dissolution rate of elemental sulfur via a higher contact surface area.
Keywords
Denitrification; Nitrification; Packed-bed; Porous ceramic; Sulfur media;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Batchelor B, Lawrence AW. Autotrophic denitrifucation using elemental sulfur. J. Water Pollut. Control Fed. 1978;50:1986-2001.
2 Lee DU, Lee IS, Choi YD, Bae JH. Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification. Process Biochem. 2001;36:1215-1224.   DOI   ScienceOn
3 Hashimoto S, Furukawa K, Shioyama M. Autotrophic denitrification using elemental sulfur. J. Ferment. Technol. 1987;65:683-692.   DOI   ScienceOn
4 Koenig A, Liu LH. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res. 2001;35:1969-1978.   DOI   ScienceOn
5 Hamoda MF, Abd-El-Bary MF. Operating characteristics of the aerated submerged fixed-film (ASFF) bioreactor. Water Res. 1987;21:939-947.   DOI   ScienceOn
6 Huang JC, Chang SY, Liu YC, Jiang Z. Biofilm growths with sucrose as substrate. J. Environ. Eng. 1985;111:353-363.   DOI   ScienceOn
7 Stensel HD, Brenner RC, Lee KM, Melcer H, Rakness K. Biological aerated filter evaluation. J. Environ. Eng. 1988;114:655-671.   DOI
8 Clescerl LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and wastewater. 20th ed. New York: American Public Health Association, American Water Works Association, Water Environment Federation; 1999.
9 Dempsey MJ, Lannigan KC, Minall RJ. Particulate-biofilm, expanded-bed technology for high-rate, low-cost wastewater treatment: nitrification. Water Res. 2005;39:965-974.   DOI   ScienceOn
10 Lekang OI, Kleppe H. Efficiency of nitrification in trickling filters using different filter media. Aquacult. Eng. 2000;21:181-199.   DOI   ScienceOn
11 Bock E, Koops HP, Harms H. Cell biology of nitrifying bacteria. In: Prosser JI, Society for General Microbiology, eds. Nitrification. Washington, DC: IRL Press; 1986. p. 17-38.
12 Gomez MA, Gonzalez-Lopez J, Hontoria-Garcia E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J. Hazard. Mater. 2000;80:69-80.   DOI   ScienceOn
13 Nogueira R, Lazarova V, Manem J, Melo LF. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor. Bioprocess Eng. 1998;19:441-449.   DOI
14 Fitch MW, Pearson N, Richards G, Burken JG. Biological fixed-film systems. Water Environ. Res. 1998;70:495-518.   DOI   ScienceOn
15 Yan J, Hu YY. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system. Bioresour. Technol. 2009;100:2341-2347.   DOI   ScienceOn
16 Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 2002;15:377-390.   DOI   ScienceOn
17 Aesoy A, Odegaard H, Bach K, Pujol R, Hamon M. Denitrification in a packed bed biofilm reactor (biofor) - experiments with different carbon sources. Water Res. 1998;32:1463-1470.   DOI   ScienceOn
18 Morita M, Kudo N, Uemoto H, Watanabe A, Shinozaki H. Protective effect of immobilized ammonia oxidizers and phenol-degrading bacteria on nitrification in ammonia- and phenol-containing wastewater. Eng. Life Sci. 2007;7:587-592.   DOI   ScienceOn
19 Show KY, Tay JH. Influence of support media on biomass growth and retention in anaerobic filters. Water Res. 1999;33:1471-1481.   DOI   ScienceOn
20 Chung J, Bae W, Lee YW, Rittmann BE. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem. 2007;42:320-328.   DOI   ScienceOn
21 Wang Z. Application of biofilm kinetics to the sulfur/lime packed bed reactor for autotrophic denitrification of groundwater. Water Sci. Technol. 1998;37:97-104.
22 Parent LE, Caron J. Physical properties of organic soils. In: Carter MR, ed. Soil sampling and methods of analysis. Boca Raton: Lewis Publishers; 1993. ch. 43.
23 Rajesh Banu J, Uan DK, Yeom IT. Nutrient removal in an A2O-MBR reactor with sludge reduction. Bioresour. Technol. 2009;100:3820-3824.   DOI   ScienceOn
24 Fu Z, Yang F, Zhou F, Xue Y. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresour. Technol. 2008;100:136-141.
25 Ma Y, Peng Y, Wang X. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal. Desalination 2009;246:534-544.   DOI   ScienceOn
26 Chen H, Liu S, Yang F, Xue Y, Wang T. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour. Technol. 2009;100:1548-1554.   DOI   ScienceOn
27 Zhang H, Wang X, Xiao J, Yang F, Zhang J. Enhanced biological nutrient removal using MUCT-MBR system. Bioresour. Technol. 2009;100:1048-1054.   DOI   ScienceOn
28 Ahn YH. Sustainable nitrogen elimination biotechnologies: a review. Process Biochem. 2006;41:1709-1721.   DOI   ScienceOn
29 Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 1994;176:6623-6630.   DOI
30 Park W, Nam YK, Lee MJ, Kim TH. Simultaneous nitrification and denitrification in a CEM (cation exchange membrane)-bounded two chamber system. Water Res. 2009;43:3820-3826.   DOI   ScienceOn
31 Zhang Y, Zhou J, Zhang J, Yuan S. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification. J. Environ. Sci. 2009;21:568-574.   DOI   ScienceOn
32 Liu Y, Capdeville B. Kinetic behaviors of nitrifying biofilm growth in wastewater nitrification process. Environ. Technol. 1994;15:1001-1013.   DOI
33 Hamlin HJ, Michaels JT, Beaulaton CM, et al. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacult. Eng. 2008;38:79-92.   DOI   ScienceOn
34 Kim Hs, Gellner JW, Boltz JP, Freudenberg RG, Gunsch CK, Schuler AJ. Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res. 2010;44:1553-1561.   DOI   ScienceOn
35 Kim D, Kim KY, Ryu HD, Min KK, Lee SI. Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresour. Technol. 2009;100:3180-3184.   DOI   ScienceOn
36 Menasveta P, Panritdam T, Sihanonth P, Powtongsook S, Chuntapa B, Lee P. Design and function of a closed, recirculating seawater system with denitrification for the culture of black tiger shrimp broodstock. Aquacult. Eng. 2001;25:35-49.   DOI   ScienceOn
37 Suzuki Y, Maruyama T, Numata H, Sato H, Asakawa M. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: towards zero emission. Aquacult. Eng. 2003;29:165-182.   DOI   ScienceOn