• 제목/요약/키워드: nitrogen passivation

검색결과 30건 처리시간 0.031초

청정도 가스 이송용 재료의 특성과 전해연마에 관한 연구 (A Study on the Characteristics of Electro Polishing and Utility Materials for Transit High Purity Gas)

  • 이종형;박신규;양성현
    • 한국산업융합학회 논문집
    • /
    • 제7권3호
    • /
    • pp.259-263
    • /
    • 2004
  • In the manufacture progress of LCD or semiconductor, there are used many kinds of gas like erosion gas, dilution gas, toxic gas as a progress which used these gas there are required high puritize to increase accumulation rate of semiconductor or LCD materials work progress of semiconductor or LCD it demand many things like the material which could minimize metallic dust that could be occured by reaction between gas and transfer pipe laying material, illumination of the surface, emition of the gas, metal liquation, welding etc also demand quality geting stricted. Material-Low-sulfur-contend (0.007-0010), vacuum-arc-remelt(VAR), seamless, high-purity tubing material is recommend for enhance welding lower surface defect density All wetted stainless steel surface must be 316LSS elecrto polishinged with ${\leq}0.254{\mu}m$($10.0{\mu}in$) Ra average surface finish, $Cr/Fe{\geq}1.1$ and $Cr_2O_3$ thickness ${\geq}25{\AA}$ From the AES analytical the oxide layer thickness (23.5~36 angstroms silicon dioxide equivalent) and chromum to iron ratios is similar to those generally found on electropolished stainless steel., molybdenum and silicon contaminants ; elements characteristic of stainless steel (iron, nickel and chromium); and oxygen were found on the surface Phosphorus and nitrogen are common contaminants from the electropolish and passivation steps.

  • PDF

AISI 304 스테인리스 강의 이온질화에 의한 질화성의 생성 상과 부식특성 (Forming Phases and corrsion properties of Nitride layer During the Ion Nitriding for AISI 304 Stainless Steels)

  • 신동훈;최운;이재호;김형준;남승의
    • 한국표면공학회지
    • /
    • 제31권1호
    • /
    • pp.54-62
    • /
    • 1998
  • In this study, the behaviorof ion nitriding of AISI 304 stainless steel was investigated using plasma ion nitriding system. The characteristics of ion nitriding, and their micsoctrucyures, and physical properties were investigated as a function of process parmeteds. important conclusions can be summarzied as follows. Firstly, it was found that growth of nitride layer in ion nitriding are mainly affected by N2 partial pressures and nitriding temperatures for AISI 304 stainless steel. The $N_2$<\TEX> partial pressure plays on important role in ion nitriding since it determiness the incoming flux of nitrogen species onto specimen surface. Nitriding thmprrature is also important besauseit determines the diffusion rates of nitrogen through nitride layers. While both parameters affects the characteristics rateding are controlled by nitridingen diffusion nitration profiles of N and alloying elements such as Cr and Ni are observed through niride layers. Secondly, nitride layer consists of the upper white laywe having various nitride phases and the underneath diffusion layers. The thickness of white layer increases with $N_2$<\TEX> partial pressures and nitriding temperatures. The thinkness of diffusion layer is increasting nitriding temperatures. Finally, nitriding of stainless steels steel show slighly low their corrsionce prorerties. However, passivation properties, which is normally observed in stainless steels, were still observed aftre ion nitriding.

  • PDF

Study the Properties of Silicon Nitride Films prepared by High Density Plasma Chemical Vapor Deposition

  • Gangopadhyay, Utpal;Kim, Do-Young;Parm, Igor Oskarovich.;Chakrabarty, Kaustuv;Kim, Chi-Hyung;Shim, Myung-Suk;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1127-1130
    • /
    • 2003
  • The characteristics of silicon nitride films deposited in a planar coil reactor using a simple high-density inductively coupled plasma chemical vapor deposition technique have been investigated. The process gases used during silicon nitride deposition cycle were pure nitrogen and a mixture of silane and helium. It has been pointed out that the strong H-atom released from the growing SiN film and Si-N bond healing are responsible for the improved electrical and passivation properties of SiN.

  • PDF

Synthesis of Nickel and Copper Nanopowders by Plasma Arc Evaporation

  • Cho, Young-Sang;Moon, Jong Woo;Chung, Kook Chae;Lee, Jung-Goo
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.411-424
    • /
    • 2013
  • In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF

Formation of a thin nitrided GaAs layer

  • Park, Y.J.;Kim, S.I.;Kim, E.K.;Han, I.K.;Min, S.K.;O'Keeffe, P.;Mutoh, H.;Hirose, S.;Hara, K.;Munekata, H.;Kukimoto, H.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1996년도 제11회 학술발표회 논문개요집
    • /
    • pp.40-41
    • /
    • 1996
  • Nitridation technique has been receiving much attention for the formation of a thin nitrided buffer layer on which high quality nitride films can be formedl. Particularly, gallium nitride (GaN) has been considered as a promising material for blue-and ultraviolet-emitting devices. It can also be used for in situ formed and stable passivation layers for selective growth of $GaAs_2$. In this work, formation of a thin nitrided layer is investigated. Nitrogen electron cyclotron resonance(ECR)-plasma is employed for the formation of thin nitrided layer. The plasma source used in this work is a compact ECR plasma gun3 which is specifically designed to enhance control, and to provide in-situ monitoring of plasma parameters during plasma-assisted processing. Microwave power of 100-200 W was used to excite the plasma which was emitted from an orifice of 25 rnm in diameter. The substrate were positioned 15 em away from the orifice of plasma source. Prior to nitridation is performed, the surface of n-type (001)GaAs was exposed to hydrogen plasma for 20 min at $300{\;}^{\circ}C$ in order to eliminate a native oxide formed on GaAs surface. Change from ring to streak in RHEED pattern can be obtained through the irradiation of hydrogen plasma, indicating a clean surface. Nitridation was carried out for 5-40 min at $RT-600{\;}^{\circ}C$ in a ECR plasma-assisted molecular beam epitaxy system. Typical chamber pressure was $7.5{\times}lO^{-4}$ Torr during the nitridations at $N_2$ flow rate of 10 seem.(omitted)mitted)

  • PDF

새로운 방식의 유기박막트랜지스터 패시베이션 기술 (The novel encapsulation method for organic thin-film transistor)

  • 이정헌;김성현;김기현;임상철;조은나리;장진;정태형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.177-180
    • /
    • 2004
  • In this study, we report a novel encapsulation method for longevity of an organic thin-film transistor (OTFT) using pentaceneby means of an adhesive multiplayerincluded Al film. For encapsulation of OTFTs, the Al film adhered onto the OTFT in a dry nitrogen atmosphere using a proper adhesive. A lifetime, which was defined as the time necessary to reduce mobility to 2% of initial mobility value, was observed from the typical $I_{D-VD}$ characteristics of the field-effect transistor (FET). The initial field effect mobility ${\mu}$ was measured to be $2.0{\times}10^{-1}\;cm^2/Vs$. The characterization was maintained for long times in air. No substantial degeneration occurred. The performance and the stability are probably due to the encapsulation effect.

  • PDF

가스 질화를 통한 316L스테인리스강의 내식성 개선 (Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding)

  • 조현빈;박세림;김지수;이정훈
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • 오스테나이트계 스테인리스강은 내식성 및 성형성이 양호하여 다양한 분야에 적용되며, 구리계의 합금을 용가재로 하는 브레이징을 통하여 다양한 형상의 제품으로 가공되어 활용되고 있다. 이때, 구리 기반의 용가재와 스테인리스강의 계면에서 갈바닉 셀을 형성하여 부식을 촉진할 수 있으며, 확산을 통해 스테인리스강에 고용 시 형성되는 구리 과다 영역(Cu-rich region)은 공식 발생의 기점이 되어 내식성을 저하시킨다. 본 연구에서는 브레이징이 적용된 스테인리스강의 내식성을 개선하고자, AISI 316L 스테인리스강에 암모니아 가스를 이용한 질화처리를 적용하였다. 질화처리한 시편은 처리 온도가 증가함에 따라 두께가 증가하고 표면 경도가 높아졌다. 동전위분극시험을 통해 내식성을 평가한 결과 질화층 내 고용된 질소의 용출 및 부동태 거동으로 모재대비 내식성이 개선되었지만 처리온도가 높아 크롬질화물(CrN) 분율이 증가하는 경우 내식성이 감소하였다.

크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구 (Synthesis of Chromium Nitride and Evaluation of its Catalytic Property)

  • 이용진;권혁회
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.451-457
    • /
    • 2006
  • $CrCl_{3}$$NH_{3}$와 반응시켜 약 $850^{\circ}C$에서 표면적이 높은 단일 상 CrN 촉매를 합성하였다. 열질량분석을 통해 고체상 화학변이가 발생하는 온도를 파악하였고 물질의 상을 XRD로 분석하였다. 합성물질의 표면적, 결정크기 등을 분석하였고 합성변수의 영향을 확인하였다. 합성된 질화물의 표면적은 $12{\sim}47m^2/g$이었다. 공간속도는 표면적 증가에 약하게나마 영향을 미쳤는데 반응중간생성물의 빠른 제거가 표면적을 높이는데 기여하는 것으로 파악되었다. 승온환원반응 분석 결과 CrN은 비활성화(passivation)시 거의 산화되지 않아 수소분위기에서의 환원이 거의 일어나지 않았으며 약 $700^{\circ}C$$950^{\circ}C$ 부근에서 결정격자 중의 질소가 $N_{2}$로 분해되었다. 공기분위기에서 10 K/min의 속도로 가열하면 $300^{\circ}C$ 이후의 온도에서 산화가 진행되어 $800^{\circ}C$ 부근에서 $Cr_{2}O_{3}$ 상이 형성되기 시작하였으며 $900^{\circ}C$에서도 완전히 산화되지 않았다. 부탄과 피리딘을 이용한 활성실험 결과 CrN 촉매는 탈수소반응에 선택적으로 높은 활성을 가졌으며 수첨탈질이나 수소분해반응 활성은 거의 없었다. 부탄의 탈수소반응에서 부피반응속도는 상용 촉매인 $Pt-Sn/Al_{2}O_{3}$보다 우수하였다.