• 제목/요약/키워드: nitrogen oxidizing bacteria

검색결과 51건 처리시간 0.027초

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification

  • Shin, Jung-Hun;Kim, Byung-Chun;Choi, Okkyoung;Kim, Hyunook;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1670-1679
    • /
    • 2015
  • Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

Fed-Batch 실험장치(實驗裝置)를 이용한 질산화(窒酸化) 미생물(微生物)들의 최대(最大) 성장율(成長率)의 결정(決定)에 관한 실험적(實驗的) 연구(硏究) (Rapid Determination of the Maximum Specific Growth Rates of Nitrogen Oxidizing Bacteria by Fed-Batch Experiments)

  • 이병희
    • 상하수도학회지
    • /
    • 제10권3호
    • /
    • pp.55-63
    • /
    • 1996
  • Nitrification reaction consists of two reactions: nitritification which oxidizes ammonia nitrogen to nitrite nitrogen and nitratification which oxidizes nitrite nitrogen to nitrate nitrogen. Each reaction is carried out by Nitrosomonas and Nitrobacter, respectively. The effective maximum growth rates for both bacteria have to be determined to design aeration tank whenever the aeration tanks have to nitrify ammonia nitrogen in influent. And these values are very important to use mathematical models such as IAWPRC model to simulate nitrification in activated sludge. There are several methods to determine these valves, however, the Fed-Batch experiments can determine these values within 72 hours. In this study, the mathematical equations and experimental procedures for Fed-Batch test are presented. Also, the experimental data and reported values are compared. The estimated mean values of maximum specific growth rates for Nitrosomonas and Nitrobacter are $0.5010day^{-1}$ and $0.6704day^{-1}$, respectively.

  • PDF

주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향 (Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal)

  • 박홍근;유대환
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제39권1호
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

Analysis of the Activated Sludge of a Municipal WWTP by Several Bio-Parameters

  • Cho Sun-Ja;Jung Yong-Ju;Park Tae-Joo;Lee Sang-Joon
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.811-815
    • /
    • 2005
  • The activated sludge from the aeration basin of the Su-yeong municipal wastewater treatment plant which has operated by a standard activated sludge process in Busan, Korea was investigated during April 2004 and January 2005 with several bio-indicators. The number of bacteria and fungi per gram of dry weight of MLSS were estimated to be $3.1\times10^6\sim1.5\times10^8\;and\;l.1\times10^3\sim1.1\times10^5$ colony forming units, respectively, by the plate agar method. By cultivation-independent methods, such as 4',6-diamidino-2-phenylindole stain and fluorescence in situ hybridization, the ratio of eubacteria to the entire biomass was evaluated by more than $80\%$ (v/v). The ratio of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to the total eubacteria was detennined to be $7.0\sim9.8\%\;and\;3.3\sim6.2\%$ without heavy variation in spite of a period of relatively low temperature in the basin. It would be expected that the nitrification would occur or at least co-exist throughout the year in the sludge of many municipal WWTP with influents that contain the sufficient nitrogen sources although the WWTP does not have any specialized processes for the removal of nitrogen.

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포 (Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process)

  • 전철학;임봉수;강호;윤경여;윤여규
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

Biological Nitrogen Removal System의 세균 군집 분석 (Structure of Bacterial Communities in Biological Nitrogen Removal System)

  • 김경미;이상일;이동훈
    • 미생물학회지
    • /
    • 제42권1호
    • /
    • pp.26-33
    • /
    • 2006
  • 생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이재하기 위하여 질산화 반응조 내 세균 군집 구조를 16S rRNA 유전자의 PCR 및 terminal restriction fragment length polymorphism (T-RELP)방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여재를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추기법을 이용한 영양염류 처리 Sequencing Batch Reactor (SBR)시스템이었고, 실험 결과 모든 시료에서 암모니아 산화 세균과 $\beta-proteobacteria$에 해당되는 말단 단편을 확인할 수 있었다. 암모니아 산화세균 군집에서 유래된 말단 단편의 염기서열을 분석한 결과 SBR공정에서는 Nitrosomonas와 Nitrosolobus에 속하는 군집 이 우점종임을 확인할 수 있었다. 그러나 다른 두 공정들에서는 $\beta-proteobacteria$에 속하는 미배양 균주와 Cardococcus australiensis와 염기서열 유사도가 높은 군집이 우점하였다. 또한, 암모니아산화 세균군집을 분석한 결과, SBR 공정이 암모니아 산화세균의 농화 배양에 가장 효과적인 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 폐수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.

유기물(有機物) 연용답토양(連用畓土壤)에 있어서 미생물상(微生物相)의 계절적(季節的) 변화(變化) (Seasonal Changes of Microflora in Paddy Soil with Long-term Application of Organic Matter)

  • 이상복;최윤희;이경보;유철현;이경수
    • 한국토양비료학회지
    • /
    • 제28권4호
    • /
    • pp.356-362
    • /
    • 1995
  • 1979년 이래 유기물(有機物)을 연용(連用)한 논토양에 있어서 미생물상(微生物相)의 이절적(李節的) 변화(變化)를 구명(究明)하고자 호남지역 전북통인 논토양에 유기물(有機物)로써 무시용, 볏짚 및 퇴비를 그리고 질소수준으로써 무시용, 150kg/ha를 처리하여 표토(表土)로부터 15cm깊이토양의 미생물상(微生物相) 변화(變化)를 검토(檢討)하였다. 전세균수(全細菌數)는 수도이앙전(水稻移秧前)인 담수직후(湛水直後)부터 유수형성기(幼穗形成期)까지 점진적인 증가 후 수확기까지 감소(減少)하였으며 방선균(放線菌), 사상균(絲狀菌) 및 셀루로스분해균수(分解菌數)은 유수형성기(幼穗形成期)까지 미약한 변화를 보였으나 그 이후 수확기까지 증가(增加)하였다. 또한 대부분의 미생물수(微生物數)는 유기물과 질소의 장기혼용구(長期混用區)에서 높았으나 셀루로스분해균만은 유기물 단독시용구에서 높았다. 질소순환미생물중 암모니아 산화균수는 수확기에, 질산산화균수와 질산환원균수는 유수 형성기에 그리고 탈질균수는 분얼초기에 높았으나 암모니아 화성균수는 유기물 또는 질소(窒素)시용 여부에 따라 달랐다. 이들 미생물들은 유기물(有機物)이나 질소의 단독시용구에 비하여 유기물과 질소혼용구(窒素混用區)에서 높았으며, 특히 탈질균은 유기물(有機物)중 볏짚시용구에서 높았으나 그 외는 차이가 없었다.

  • PDF