• Title/Summary/Keyword: nitrogen mass balance

Search Result 79, Processing Time 0.021 seconds

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

Alkalinity Supplement using Sea Shell for Sulfur-utilizing Autotrophic Denitrification (황-이용 독립영양 탈질에서의 패각을 이용한 알칼리도 공급)

  • Byun, Jung-Sup;Bum, Bong-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1777-1787
    • /
    • 2000
  • The purpose of this study was to select an effective and economical alkali source for sulfur-utilizing autotrophic denitrification. Tests on acid neutralization and denitrification at various alkali/sulfur mixing ratios were performed for charcoal, briquette ashes, sea shell, and limestone. The results of the experiments showed that sea shell was the most effective alkali source because it could provide more surface area than limestone, and the optimal alkali/sulfur mixing ratio was 1/1(V/V). In a sulfur/sea shell packed bed reactor, the denitrification efficiency was above 90% up to a loading rate of 116 g $NO_3{^-}-N/m^3-day$. but the denitrification efficiency deteriorated to 48% at the loading rate of 145 g $NO_3{^-}-N/m^3-day$. The average $SO_4{^{2-}}$ generation per g of $NO_3{^-}-N$ removed was 7.02 g, which is lower than the theoretical value of 7.54 g. Denitrification and sulfate generation appeared to be a first-order and a zero-order reaction with a reaction rate constant of 0.146 /hr and -53.1 mg/L-hr, respectively. According to nitrogen mass balance, 71~109%, with an average of 90%, of the removed nitrogen was recovered as $N_2$ gas.

  • PDF

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Analysis of Nutrient Cycling Structure of a Korean Beef Cattle Farm Combined with Cropping as Affected by Bedding Material Types (깔개물질의 종류에 따른 한우-경종 결합 농가의 양분순환 구조 분석)

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kim, Yong-Soon;Yun, Bong-Ki;Kim, Sun-Woo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.354-361
    • /
    • 2008
  • In this study, we analyzed nutrient cycling structure of a small farm (cattle of 100 heads and arable lands of 2.5 ha) in Jeonnam province to investigate the effects of nutrients input by the addition of bedding materials (sawdust and rice hull) and nutrients loss before the application to the soils (the period during manure storage in the feedlot and composting process) on nutrient cycling structure. Sawdust and rice hull added as bedding materials increased N by 1.6% and 14.2% and $P_2O_5$ by 3.1% and 27.4%, respectively, relative to the amount of nutrients produced by excretion. This result suggests that the addition of nutrients via bedding materials should be considered for better estimation of nutrient balance. The most significant characteristics of the nutrient cycling structure was loss of mass and nutrients during the storage (21 days) and composting period (90 days). During this period, 78.4% of N and 9.5% of $P_2O_5$ was lost from sawdust compost; meanwhile, the percentages of loss for rice hull compost were 81.6% and 10.3%, respectively. A lower percentage of nutrients loss in sawdust compost than that in rice hull compost was attributed to the relatively slow decomposition rate of organic materials in the sawdust compost which has higher C/N ratio and lignin contents. Therefore, it was concluded that estimation of nutrient balance should be conducted based on nutrient contents in the final compost being applied to the lands rather than the amount of nutrients contained in the livestock excretion. In addition, the effects of bedding materials on nutrient losses should be also taken into account.

Effects of Hydraulic Retention Time and Temperature on Sulfur-utilizing Autotrophic Denitrification (황을 이용한 독립영양탈질에서의 체류시간과 온도의 영향)

  • Byun, Jung-Sup;Bum, Bong-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.405-415
    • /
    • 2000
  • Experiments for autotrophic denitrification were performed using an upf10w reac1.or packed with sulfur particles as an electron donor. The influent $NO_3{^-}$-N concentration was kept almost constant, but the hydraulic retention time(HRT) and temperature varied. Results of the research showed that the denitrification efficiency and gas generation rate decreased as the HRT and temperature were reduced. During the HRT effect experiment, alkalinities of 3.44~5.71g, with an average of 4.67 g which is close to the theoretical value of 4.57g were consumed for each gram of $NO_3{^-}$-N removed. During the temperature effect experiment, however, the values were 6.58~13.41 g with an average of 9.12 g which is almost twice the theoretical value Denitrification along the length of the reactor appeared to be a first-order reaction with a reaction rate constant of 0.1648/hr. On the other hand, the sulfate generation showed a zero-order reaction with a reaction rate constant of 241/hr. There was some discrepancy in the nitrogen mass balance between the theoretical and measured values, requiring further researches.

  • PDF

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

The Budget of Nutrients in the Estuaries Near Mokpo Harbor (목포항 주변 하구역의 영양염 수지)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Oh, Hyun-Taik;Jeon, Seung-Ryul;Choi, Yong Hyeon;Han, Hyoung-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.708-722
    • /
    • 2016
  • Land-Ocean Interactions in the Coastal Zone (LOICZ) models for nutrient budgets were used to estimate the seasonal capacity of the Youngsan Estuary and Youngam-Geumho Estuary to sink and/or supply nutrients such as dissolved inorganic phosphorus (DIP) and nitrogen (DIN) to provide an understanding of the behavior of the coupled biogeochemical cycles of phosphorus and nitrogen in the estuaries (Youngsan Estuary, Youngam-Geumho Estuary) near Mokpo Harbor. During non-stratified periods (May, September, and November, 2008), simple three-box models were applied in each sub-region of the system, while a two-layer box model was applied during on-site observation of stratification development (July, 2008). The resulting mass-balance calculation indicated that even after large discharges from artificial lakes (in May and July), DIP influxes due to a mixing exchange ($V_{X-3}$, or $V_{deep}$) were more than terrigenous loads, indicating the backward transportation of nutrients from a marine source. The model results also indicated that for nutrient loads (DIP and DIN fluxes) in September, an extreme congestion of nutrients occurred around the mouths (sub-region III of the model) of the estuaries, possibly due to an imbalance in physical circulations between the estuaries and offshore locations. In November, the Youngam-Geumho Estuary, into which freshwater was discharged from artificial lakes (Youngam and Geumho Lake), showed nutrient enrichment in the water column, but the Youngsan Estuary showed nutrient depletion. In conclusion, to efficiently control water quality in the estuaries near Mokpo Harbor, integrated environmental management programs should be implemented. I.e., the reduction of nutrient loads from land basins as well as the deposit of nutrient loads into adjacent coastal lines.

Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application (고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가)

  • Ahn, Young-Ho;Speece, R.E.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.