• 제목/요약/키워드: nitrogen corrected apparent metabolizable energy(AMEn)

검색결과 14건 처리시간 0.014초

주요곡물의 에너지 함량 평가에 관한 연구 (A Study on Estimation of Metabolizable Energy Content in Cereal)

  • 김은미
    • Journal of Nutrition and Health
    • /
    • 제29권1호
    • /
    • pp.50-58
    • /
    • 1996
  • This study was undertaken to determined the metabolizable energy of cereal by the different method. Raw or cooked cereal foods were freeze-dried and fed to Sprague Dawley rat with 200-300g body weight to measure apparent metabolizable energy(AME) values and nitrogen-corrected AME(AMEn) values for four days after three days of preliminary period for adaptation to the diets. The AME values of Karaeddok, raw rice, cooked rice, raw brown rice, raw glutinous rice, cooked glutinous rice, raw barley and cooked barley applerared 4516.1, 3380.6, 4072.2, 3457.0, 4448.0, 2929.4 and 3780.2kcal/kg dry matter, respectively. The AMEn values of karaeddok, raw rice, cooked rice, raw brown rice, cooked brown rice, raw glutinous rice, cooked glutinous rice, raw barley and cooked barley appeared 4421.5, 3349.6, 4160.0, 3918.7, 4039.3, 3572.0, 4552.5, 3009.9 and 3873.4kcal/kg dry matter, respectively. A slight difference was observed when the AME values of the cereals measured in present study were compared with the energy values calculated by various conversion parameters such as Atwater's, Rubner's, Sochun's adn FAO's, indicating that the latter energy values by all conversion factors are acceptabel for several cereals.

  • PDF

주요 당류 및 해조류의 대사 에너지 함량 평가에 관한 연구 (A study on estimation of metabolizable energy content in starch-foods and seaweeds)

  • 김은미
    • Journal of Nutrition and Health
    • /
    • 제29권3호
    • /
    • pp.251-259
    • /
    • 1996
  • The validity of the energy data of the starch-foods and seaweeds in Korean food composition tables has been suspected due to possible differences in their chemical compositions from those of western food ingredients. Energy conversion parameters being used currently in nutrition has been derived in countries where food items re quite different from ours. This study was undertaken to determine the metabolizable energy of starch-foods and seaweeds by the method selected in preexperiment20). Cooked starch foods and seaweeds were freeze-dried and fed to Sprague Dawley rat with 200∼300g body weight to measure apparent metabolizable energy (AME) values and nitrogen-corrected AME (AMEn) values for four days after three days of preliminary period for adaptation to the diets. The AME and AMEn values of the wheat noodle were 4554.6, 4584.7, the Starch Vermicelli, 3763.4, 3855.7, the Ra myon, 4916.9, 4876.0, the Buckwheat noodle, 4469.7, 4442.0kcal/kg dry matter, the Potato, 4514.6, 4520.0 and those of the Bread, 3256.9, 3582.6, 3260.5, kcal/kg dry matter, respectively. Those of Sea tangle were 1437.3, 1631.3 and of Laver, 3126.6, 3171.3kcal/kg dry matter, resectively. When the AME values of the starch-foods and seaweeds measureed in present study were compared with energy values calculated by various conversion parameters such as Atwater's Rubner's, Sochun's and FAO's, there appeared dramatic differences indicating that for many of the food items, the latter energy values by conversion factors are hardly acceptable. These data also suggest that the existing energy conversion factors are not applicable to seaweeds and a further study is needed to obtain specific factors for the conversion to biological energy from the chemical composition of seaweeds.

  • PDF

Amino Acids and Protein Digestibility and Metabolizable Energy Availability of Barley Ration in Response to Grind® Enzyme in Broiler Chickens

  • Saki, Ali Asghar;Mirzayi, S.;Ghazi, Sh.;Moini, M.M.;Naseri Harsini, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.614-621
    • /
    • 2010
  • Increasing accuracy of broiler diet formulation based on amino acid digestibility in comparison to application of total amino acids could lead to more feed efficiency and productivity. This experiment was conducted for determination of sampling site (excreta and ileum) and recognition of the effects of a commercial enzyme ($Grind^{(R)}$ Danisco, Finland) on metabolizable energy, protein and amino acid digestibility of barley. This study was modulated by a marker in 21-day old Arbor Acres chickens. Corn-soybean meal was used as a control diet and, in the other two treatments, barley (at a level of 40%) with and without enzyme as the test ingredient were supplemented to the basal diet. Chromic oxide was included in all diets (0.5%) as an indigestible marker. Apparent metabolizable energy (AME), corrected by nitrogen (AMEn) and apparent digestibility of aspartic acid, glutamic acid, serine, glycine, alanine, tyrosine, valine and methionine were significantly (p<0.05) higher in feces than ileum. Protein digestibility of diet and barley was significantly (p<0.05) higher in the ileum than in feces. Apparent digestibility of tryptophan, proline, methionine, phenylalanine and lysine was increased significantly (p<0.05) by enzyme supplementation. In contrast, no response was observed in AME, AMEn, and protein digestibility of the diet and barley by enzyme supplementation. The results of this study have shown that AME and amino acid digestibility were increased in feces, in contrast an adverse effect was observed for protein digestibility of the diet and barley.

병아리 사료에서 일반대사에너지와 순대사에너지의 이론적 정확성 비교를 위한 실험 (Feeding Trials to Compare Theoretical Accuracy between Apparent and True Metabolizable Energy Systems in Chick Diets)

  • 지규만
    • Journal of Nutrition and Health
    • /
    • 제25권7호
    • /
    • pp.543-554
    • /
    • 1992
  • True metabolizable energy(TME) is believed a better indicator for animal performance than apparent metabolizable energy (AME) for excluding the endogenous energy losses from excreta, However few researches have been conducted to compare superiority of any energy systems through practical animal feeding tests. Present study was to compare the energy systems in young chicks in terms of predictability of energy intake for the birds performances including body energy retention and of methodological accuracy by evaluating reproducibility and additi-vity of energy values of feed ingredients and compound diets. Five ingredients such as yellow corn wheat soybean meal fish meal and wheat bran were measured for their various biological energy values. in the first feeding trial chicks were restric-ted-fed the basal diet at 80, 60 and 40% on weight basis of the amount of feed ingested by chicks fed ad libitum the same diet. chicks in the second trial were also restricted-fed diets at levels of 80, 70, 60 and 50% on energy basis of the amount consumed by the basak duet group fed ad libitum The diets in the latter trial were however composed of differeent formulations from the basal diet. One-week-old Single Comb White Leghorn male chicks were individually alloted in a cage on 10 cages/treatment basis and fed the diets for 14 days. Individual carcass energy was measured after the feeding trials. Coefficients of variation of energy measurements were lesser for nitrogen-corrected AME and TME(AMEn & TMEn respectively) than AME and TME values suggesting taht reprodu-cibility of energy determinations by former systems could be better than the latters. The coeffi-cients for AME and TME were almkost of the same values. Additivity obtained by the rations between the calculated values and catual measurements appeared quite satisfactory for all the energy systems. Those of AME and TME however were relatively better than the other systems. Regression coefficient ${r}^2$ between energy intake by various systems and chick performances appeared higher for TME, AMEn and TMEn than AME implying that the former systems could provide better predictability for body weight gain and energy retention than the AME. The ${r}^2$ values for TME and AMEn particularly for body weight gain were on the average 0.967 and 0.960 respectively. In conclusion TME or AMEn can be recommended as choice for dietary energy system in terms of performance predictability of the birds and of procedural convenience for the measurements.

  • PDF

The Availability of Energy and Protein, with Respect to Uric Acid, of Yellow-seeded Rapeseed Meal in Broiler Diets

  • Saki, A.A.;Mahmoudi, H.;Tabatabaei, M.M.;Ahmadi, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1624-1628
    • /
    • 2008
  • Experiments were conducted to evaluate the nutritional value of yellow-seeded rapeseed meal (YRSM). In the first experiment nutrient retention was recorded by 48 Arbor Acres-broiler chickens (28-d old) to determine AMEn (nitrogen-corrected apparent metabolizable energy), coefficient of apparent protein digestibility based on ileal digesta nitrogen, excreta nitrogen and uric acid nitrogen. The second experiment was carried out with 304 Arbor Acres-broiler chickens to compare effects of SBM (soybean meal) and YRSM on performance, carcass and digestive tract status. In the control treatment, SBM was replaced by graded levels of YRSM at 15, 22.5 and 30% of diet. Digestibility of YRSM protein was significantly lower (p<0.001) than SBM protein. The protein digestibility based on ileal measurement was significantly higher (p<0.001) than protein digestibility from excreta samples. There was no significant difference (p>0.001) between ileal and excreta digestibility of protein based on uric acid. AMEn as a fraction of gross energy was 0.54 in SBM and 0.45 in YRSM. With the exception of 30% YRSM, other YRSM treatments resulted in major effects on length and weight of the gastrointestinal tract. The results of this study have shown no adverse effect on performance as well as protein digestibility and energy value in response to replacement of SBM by YRSM with the exception of 22.5 and 30% YRSM.

Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

  • Gomez-Rosales, S.;Angeles, M. De L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.215-222
    • /
    • 2015
  • The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

Effects of Functional Oils on Coccidiosis and Apparent Metabolizable Energy in Broiler Chickens

  • Murakami, A.E.;Eyng, C.;Torrent, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권7호
    • /
    • pp.981-989
    • /
    • 2014
  • The objective of the present study was to investigate the effects of a mixture of functional oils (Essential, Oligo Basics Agroind. Ltda) on performance response of chickens challenged with coccidiosis and the determination of apparent metabolizable energy (AME), nitrogen-corrected apparent metabolizable energy (AMEn), the coefficients of protein and ether extract digestibility and intestinal morphology of broilers fed with diets containing Essential. In Exp. 1, a completely randomized design (CRD) was used, with one control diet without Essential inclusion with coccidiosis (Eimeria acervulina, Eimeria maxima, and Eimeria tenella) challenged birds and two different inclusion rates of Essential (1.5 kg/ton and 2 kg/ton) with coccidiosis-challenged and non-challenged birds for each inclusion rate, using 10 replicates and 50 birds per experimental unit. After 7 d of coccidiosis challenge, the livability was approximately 10% lower (p<0.05) for the control group. Intestinal lesion scores were lower (p<0.05) in the anterior intestine and the cecum for the chickens supplemented. Feed efficiency and growth rate were improved in birds supplemented with Essential (p<0.05) before the coccidiosis challenge and during the first 7 d post infection. In Exp. 2, a CRD was used, with one control diet without Essential inclusion and one diet with inclusion of Essential (1.5 kg/ton), using nine replications and 33 chicks per pen. The diets with Essential yielded approximately 4% higher AME (p = 0.003) and $AME_n$ (p = 0.001). Essential supplementation increased villus height in the jejunum on d 14 (p<0.05). Villus height:crypt depth ratio for the supplemented birds was larger (p<0.05) in the jejunum on d 7, larger (p<0.05) in the jejunum and ileum on d 14. In conclusion, these functional oils improved the energy utilization and the livability and decreased lesions caused by coccidiosis in supplemented birds.

Validation of Prediction Equations of Energy Values of a Single Ingredient or Their Combinations in Male Broilers

  • Alvarenga, R.R.;Rodrigues, P.B.;Zangeronimo, M.G.;Oliveira, E.C.;Mariano, F.C.M.Q.;Lima, E.M.C.;Garcia, A.A.P. Jr;Naves, L.P.;Nardelli, N.B.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1335-1344
    • /
    • 2015
  • A set of prediction equations to estimate the nitrogen-corrected apparent metabolizable energy (AMEn) of individual ingredients and diets used in the poultry feed industry was evaluated. The AMEn values of three energy ingredients (maize, sorghum and defatted maize germ meal), four protein ingredients (soybean meal, maize gluten meal 60% crude protein, integral micronized soy and roasted whole soybean) and four diets (three containing four feedstuffs, complex diets, and one containing only corn-soybean meal, basal diet) were determined using a metabolism assay with male broilers from 1 to 7, 8 to 21, 22 to 35, and 36 to 42 days old. These values were compared to the AMEn values presented in the tables of energy composition or estimated by equation predictions based on chemical composition data of feedstuffs. In general, the equation predictions more precisely estimated the AMEn of feedstuffs when compared to the tables of energy composition. The equation AMEn (dry matter [DM] basis) = 4,164.187+51.006 ether extract (% in DM basis)-197.663 ash-35.689 crude fiber (% in DM basis)-20.593 neutral detergent fiber (% in DM basis) ($R^2=0.75$) was the most applicable for the prediction of the energy values of feedstuffs and diets used in the poultry feed industry.

Evaluation of energy and amino acids of brown rice and its effects on laying performance and egg quality of layers

  • An, Byoung-Ki;An, Su Hyun;Jeong, Han-Seul;Kim, Kwan-Eung;Kim, Eun Jip;Lee, Sang-Rak;Kong, Changsu
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.374-384
    • /
    • 2020
  • Two experiments were conducted to determine apparent metabolizable energy (AME), nitrogen-corrected AME (AMEn), and ileal digestible amino acid (AA) content of brown rice (BR) and to investigate the effect of dietary supplementation of BR on laying performance and egg quality of laying hens. In Exp. 1, 72 Hy-line Brown layers (49-week-old) were allocated to two treatments using a completely randomized block design, and each treatment included six cages per treatment and six hens per cage. A semi-purified diet was formulated to include BR as the sole source of AA and energy and an N-free diet was used to determine basal endogenous loss of AA. The hens were fed a commercial layer diet for adaptation to the experimental environment and diet for 7 days from d 0, and then fed experimental diets for 5 days from d 7. Excreta were collected from d 10 to 11 and ileal digesta were collected on d 12. On a dry matter (DM) basis, the AME and AMEn of BR was determined at 3,773 and 3,729 kcal/kg, respectively. The apparent ileal digestibility (AID) of BR ranged from 32.7% for Thr to 73.7% for Arg. The range of the standardized ileal digestibility (SID) value was between 79.4% for Met and 96.6% for Lys. In Exp. 2, 252 Hy-line Brown layers (44-week-old) were divided into four groups, comprising seven replicates of nine birds each and assigned to four experimental diets containing 0 (Control), 5%, 10%, or 15% BR for 5 weeks. The BR-containing diets were formulated to be equal in the content of AMEn and digestible AA to those of the diet without BR. No significant differences were observed in laying performances. Egg quality and blood profiles were not linearly or quadratically affected by dietary treatments. These results suggest that up to 15% BR can be included into layer feed without any adverse effects on laying performance and egg quality, if its energy and digestible AA values are well evaluated.

Energy Utilization of Growing Chicks in Various Nutritional Conditions

  • Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.903-909
    • /
    • 2003
  • For the last two decades, energy utilization of growing chicks has been studied more and more. This paper focuses on the energy utilization estimated by the metabolizable energy (ME) values and the efficiency at which ME is used for growth of chicks under various nutritional environment. Degree of saturation of dietary fats is responsible for nitrogen-corrected apparent metabolizable energy (AMEn) of fats. The effect of dietary fat sources on heat production depends on the kind of unsaturated fatty acids as well as the degree of saturation. Medium chain triglyceride shows lower AME and net energy than long chain triglyceride. Phytase as feed additives increases the AME values of the diet along with improvement of the phosphorous utilization. Ostriches have higher ability to metabolize the energy of fiber-rich foodstuffs than fowls. Their higher ability seems to be associated with fermentation of fiber in the hindgut. Proportions of macronutrients in the diets have influenced not only the gain of body protein and energy but also the oxidative phosphorylation of the chicken liver. Essential amino acids deficiency reduces ME/GE (energy metabolizability) little, if any. Growing chicks respond to a deficiency of single essential amino acids with the reduction of energy retained as protein and increased energy retained as fat. Thus, energy retention is proportional to ME intake despite deficiency, and efficiency of ME utilization is not affected by deficiency of amino acids. Effect of oral administration of clenbuterol, a beta-adrenergic agonist, on the utilization of ME varies with the dose of the agents. Although the heat production related to eating behavior has been estimated less than 5% of ME, tube-feeding diets decreases HI by about 30%.