Browse > Article
http://dx.doi.org/10.5713/ajas.14.0339

Validation of Prediction Equations of Energy Values of a Single Ingredient or Their Combinations in Male Broilers  

Alvarenga, R.R. (Animal Sciences Department, Federal University of Lavras (UFLA))
Rodrigues, P.B. (Animal Sciences Department, Federal University of Lavras (UFLA))
Zangeronimo, M.G. (Veterinary Medicine Department, Federal University of Lavras)
Oliveira, E.C. (Animal Sciences Department, Federal University of Lavras (UFLA))
Mariano, F.C.M.Q. (Exact Science Department, Federal University of Lavras)
Lima, E.M.C. (Animal Sciences Department, Federal University of Lavras (UFLA))
Garcia, A.A.P. Jr (Animal Sciences Department, Federal University of Lavras (UFLA))
Naves, L.P. (Animal Sciences Department, Federal University of Lavras (UFLA))
Nardelli, N.B.S. (Animal Sciences Department, Federal University of Lavras (UFLA))
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.9, 2015 , pp. 1335-1344 More about this Journal
Abstract
A set of prediction equations to estimate the nitrogen-corrected apparent metabolizable energy (AMEn) of individual ingredients and diets used in the poultry feed industry was evaluated. The AMEn values of three energy ingredients (maize, sorghum and defatted maize germ meal), four protein ingredients (soybean meal, maize gluten meal 60% crude protein, integral micronized soy and roasted whole soybean) and four diets (three containing four feedstuffs, complex diets, and one containing only corn-soybean meal, basal diet) were determined using a metabolism assay with male broilers from 1 to 7, 8 to 21, 22 to 35, and 36 to 42 days old. These values were compared to the AMEn values presented in the tables of energy composition or estimated by equation predictions based on chemical composition data of feedstuffs. In general, the equation predictions more precisely estimated the AMEn of feedstuffs when compared to the tables of energy composition. The equation AMEn (dry matter [DM] basis) = 4,164.187+51.006 ether extract (% in DM basis)-197.663 ash-35.689 crude fiber (% in DM basis)-20.593 neutral detergent fiber (% in DM basis) ($R^2=0.75$) was the most applicable for the prediction of the energy values of feedstuffs and diets used in the poultry feed industry.
Keywords
Energy; Prediction Equation; Feed Formulation; Poultry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 AOAC. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
2 Alvarenga, R. R., P. B. Rodrigues, M. G. Zangeronimo, R. T. F. Freitas, R. R. Lima, A. G. Bertechini, and E. J. Fassani. 2011. Energetic values of feedstuffs for broilers determined with in vivo assays and prediction equations. Anim. Feed Sci. Technol. 168:257-266.   DOI   ScienceOn
3 Alvarenga, R. R., P. B. Rodrigues, M. G. Zangeronimo, L. Makiyama, E. C. Oliveira, R. T. F. Freitas, R. R. Lima, and V. M. P. Bernardino. 2013. Validation of prediction equations to estimate the energy values of feedstuffs for broilers: performance and carcass yield. Asian Australas. J. Anim. Sci. 26:1474-1483.   DOI   ScienceOn
4 Anuradha, Y., S. Parminder, and S. S. Sikka. 2013. Relationship between buffering capacity and chemical composition of poultry feedstuffs. J. Kr. Vig. 2:52-54.
5 Batal, A. and N. Dale. 2012. Feedstuffs: ingredient analysis table: 2009 edition. University of Georgia, Athens, Greece. Available: http://fdsmagissues.feedstuffs.com/fds/Reference_issue_2012/03_Ingredient%20Analysis%20Table%202012%20Edition.pdf. Accessed July 14, 2013.
6 Carre, B., B. Prevotel, and B. Leclercq. 1984. Cell wall content as a predictor of metabolizable energy value of poultry feedingstuffs. Br. Poult. Sci. 25:561-572.   DOI
7 Chadd, S. A. 2008. Future trends and developments in poultry nutrition. In: Poultry in the 21st Century: Avian Influenza and Beyond. UN Food and Agriculture Organisation (FAO) International Poultry Conference. Bangkok, Thailand.
8 Cobb 500, 2008a: Broiler Management Guide. Cobb-Vantress, Guapiacu-SP, Brazil.
9 Corduk, M., N. Ceylan, and F. Ildiz. 2007. Effects of dietary energy density and L-carnitine supplementation on growth performance, carcass traits and blood parameters of broiler chickens. S. Afr. J. Anim. Sci. 37:65-73.
10 Dourado, L. R. B., J. C. Siqueira, N. K. Sakomura, S. R. F. Pinheiro, S. M. Marcato, J. B. K. Fernandes, and J. H. V. Silva. 2010. Poultry feed metabolizable energy determination using total or partial excreta collection methods. Rev. Bras. Cienc. Avic. 12:129-132.
11 Fagard, R. H., J. A. Staessen, and L. Thijs. 1996. Advantages and disadvantages of the meta-analysis approach. J. Hypertens. 14:9-13.
12 Farrel, D. J. 1978. Rapid determination of metabolizable energy of foods using cockerels. Br. Poult. Sci. 19:303-308.   DOI
13 Frikha, M., M. P. Serrano, D. G. Valencia, P. G. Rebollar, J. Fickler, and G. G. Mateos. 2012. Correlation between ileal digestibility of amino acids and chemical composition of soybean meals in broilers at 21 days of age. Anim. Feed Sci. Technol. 178:103-114.   DOI   ScienceOn
14 Garnsworthy, P. C., J. Wiseman, and K. Fegeros. 2000. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. J. Agric. Sci. 135:409-417.   DOI   ScienceOn
15 Hill, F. W. and D. L. Anderson. 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603.
16 Lesson, S. and J. D. Summers. 1997. Commercial Poultry Nutrition, 2nd ed. University of Books, Guelph, ON, Canada. 350. p.
17 Longland, A. C. 1991. Digestive enzyme activities in pigs and poultry. In: In Vitro Digestion for Pigs and Poultry (Ed. M. F. Fuller). CAB International, Wallingford, UK. pp. 3-18.
18 Mayer, D. G., M. A. Stuart, and A. J. Swain. 1994. Regression of real-world data on model output: an appropriate overall test of validity. Agric. Syst. 45:93-104.   DOI   ScienceOn
19 Mariano, F. C. M. Q., R. R. Lima, P. B. Rodrigues, R. R. Alvarenga, and G. A. J. Nascimento. 2012. Prediction equations of energetic values of feedstuffs obtained using meta-analysis and principal components. Cienc. Rural 42: 1634-1640. (Abstr. in English).   DOI
20 Matterson, L. D., L. M. Potter, M. W. Stutz, and E. P. Singsen. 1965. The metabolizable energy of feed ingredients for chickens (Research Report, 7). Agric. Exp. Station, University of Connecticut, Storrs, CT, USA. p. 11-14.
21 Min, Y. N., J. S. Shi, F. W. Wei, H. J. Wang, X. F. Hou, Z. Y. Niu, and F. Z. Liu. 2012. Effects of dietary energy and protein on growth performance and carcass quality of broilers during finishing phase. J. Anim. Vet. Adv. 11:3652-3657.   DOI
22 Murugesan, G. R., B. J. Kerr, and M. E. Persia. 2013. Evaluation of energy values of various oil sources when fed to broiler chicks. Anim. Ind. Rep. AS 659, ASL R2804.
23 Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, A. G. Bertechini, R. R. Lima, and L. E. A. Pucci. 2009. Prediction equations to estimate the energy values of plant origin concentrate feeds for poultry utilizing the meta-analysis. Rev. Bras. Zootec. 38:1265-1271. (Abstr. in English).   DOI   ScienceOn
24 Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, R. V. Reis Neto, R. R. Lima, and I. B. Allaman. 2011a. Prediction equations to estimate metabolizable energy values of energetic concentrate feedstuffs for poultry by the meta-analysis process. Arq. Bras. Med. Vet. Zootec. 63:222-230. (Abstr. in English).   DOI
25 Nunes, J. O., A. G. Bertechini, J. A. G. Brito, L. Makiyama, F. R. Mesquita, and C. M. Nishio. 2012. Evaluation of cysteamine associated with different energy patterns in diets for broiler chickens. Rev. Bras. Zootec. 41:1956-1960.   DOI
26 Nascimento, G. A. J., P. B. Rodrigues, R. T. F. Freitas, I. B. Allaman, R. R. Lima, and R. V. Reis Neto. 2011b. Prediction equations to estimate the AMEn values of protein feedstuffs for poultry utilizing meta-analysis. Rev. Bras. Zootec. 40:2172-2177. (Abstr. in English).   DOI
27 NRC (National Research Council). 1994. Nutrient Requirements of Poultry, 9th ed. National Academy Press, Washington, DC, USA.
28 Neter, J., W. Wasserman, and M. Kutner. 1985. Applied linear statistical models. Regression, Analysis of Variance, and Experimental Design, 2nd ed. Irwin, Homewood, IL, USA.
29 Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, and S. L. T. Barreto. 2005. Brazilian Tables for Poultry and Wwine: Composition of Feedstuffs and Nutritional Requirements, 2nd ed. Federal University of Vicosa, Vicosa, p. 181.
30 Rostagno, H. S., L. F. T. Albino, J. L. Donzele, P. C. Gomes, R. F. Oliveira, D. C. Lopes, A. S. Ferreira, S. L. T. Barreto and R. F. Euclides. 2011. Brazilian tables for poultry and swine: Composition of feedstuffs and nutritional requirements. Third ed. Federal University of Vicosa, Vicosa, Brazil. p. 252.
31 SAS Institute Inc. 2004. STAT User's Guide. version 9.00. 4th edn. Cary, NC, USA.
32 Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55:303-308.   DOI
33 Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI
34 Sibbald, I. R. and S. J. Slinger. 1963. A biological assay for metabolizable energy in poultry feed ingredients together with findings which demonstrate some of the problems associated with the evaluation of fats. Poult. Sci. 42:313-325.   DOI
35 Silva, E. P., C. B. V. Rabello, M. B. Lima, E. M. F. Arruda, J. V. Ludke, and M. C. M. M. Ludke. 2012. Determination of the chemical composition, amino acid levels and energy values of different poultry offal meals for broilers. Rev. Bras. Cienc. Avic. 14:97-107.   DOI
36 Tedeschi, L. O. 2006. Assessment of the adequacy of mathematical models. Agric. Syst. 89:225-247.   DOI   ScienceOn
37 Wan, H. F., W. Chen, Z. L. Qi, P. Peng, and J. Peng. 2009. Prediction of true metabolizable energy from chemical composition of wheat milling by-products for ducks. Poult. Sci. 88:92-97.   DOI   ScienceOn
38 Wongsuthavas, S., S. Terapuntuwat, W. Wongsrikeaw, S. Katawatin, C. Yuangklang, and A. C. Beynen. 2008. Influence of amount and type of dietary fat on deposition, adipocyte count and iodine number of abdominal fat in broiler chickens. J. Anim. Physiol. Anim. Nutr. 92:92-98.
39 Zhang, W. J., L. D. Campbell, and S. C. Stothers. 1994. An investigation of the feasibility of predicting nitrogen-corrected true metabolizable energy (TMEn) content in barley from chemical composition and physical characteristics. Can. J. Anim. Sci. 74:355-360.   DOI   ScienceOn