• Title/Summary/Keyword: nitrogen compounds

Search Result 882, Processing Time 0.039 seconds

Changes of Chemical Compounds off the Compost of Municipal Refuse;2. Changes in Nitrogen Compounds (폐기물의 퇴비화 과정중 물질 변화;2. 질소화합물 변화)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.146-152
    • /
    • 1988
  • In order to examine the seasonal variation of organic and inorganic nitrogen compounds, nitrogen compounds in compost were determined at various composting periods. Total nitrogen, organic nitrogen and biodegradable nitrogen contents in compost were almost not changed, while nonbiodegradable nitrogen contents were increased a little with the lapse of composting time. But effective contents of total nitrogen, organic nitrogen and biodegradable nitrogen were decreased with the progress of composting, while effective contents of nonbiodegradable nitrogen were not changed during composting. Ammonium nitrogen contents in compost were highest at the start of composting, and then the contents were decreased with the lapse of composting time. But after turning the contents were increased again, and thereafter the contents were decreased with the progress of composting. Nitrate contents showed a tendency adverse to ammonium nitrogen contents. Organic nitrogens in organic matter in compost were increased slowly within 9 weeks after composting, and thereafter the contents were increased rapidly to 21 weeks after composting. Total nitrogen contents determined by $F{\"{o}}rster$ Method were higher than those determined by Kjeldahl Method. Total nitrogen contents determined by Kjeldahl Method were 6% higher than biodegradable nitrogen contents determined by $F{\"{o}}rster$ Method. Loss of nitrogen in compost was highest at early periods of composting and its losses determined by Kjeldahl Method and $F{\"{o}}rster$ Method in 30 weeks after composting were 50% and 48% of total nitrogen, respectively. Highly positive correlations were observed among total nitrogen determined by Kjeldahl Method, biodegradable nitrogen determined by Kjeldahl Method, total nitrogen determined by $F{\"{o}}rster$ Method and biodegradable nitrogen determined by $F{\"{o}}rster$ Method one another.

  • PDF

Biodegradation Characteristics of Nitrogen-containing Aromatic Compounds in Activated Sludge (활성슬러지를 이용한 질소방향족화합물의 생물학적 분해 특성)

  • Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.222-228
    • /
    • 2010
  • Biological degradation of nitrogen-containing aromatic compounds was investigated in activated sludge previously adapted to mineralize low concentrations of nitrogen-containing aromatic compounds. Normally, the time required for 95% degradation of 10 mg/l dinitrophenol (DNP) under aerobic conditions was less than 4 hours without any lag, and with mixed liquor suspended solid (MLSS) levels from 600 to 1,000 mg/l. However, when the initial DNP concentration was increased to 75 mg/l, lags and even complete inhibition of DNP degradation were observed. The length of the lag was found to increase proportionally with decreasing MLSS levels. When dilute activated sludge was incubated for extended periods (192 hours), degradation of 75 mg/l DNP did eventually occur after lag periods of 37 to 144 hours, depending on the MLSS concentration. DNP was degradable in high concentrations if MLSS concentrations were sufficiently high to allow growth of bacteria resistant to the toxic effects of DNP.

Comparison of Extractive Nitrogenous Constituents between the Diploid and the Triploid of Oyster Crassostrea gigas Whole Body

  • Park Choon-Kyu
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.135-141
    • /
    • 1999
  • In order to investigate the composition of extractive nitrogenous components in the diploid and the triploid oysters, Crassostrea gigas, cultured at the south coast of Korea, the whole edible part (whole body) was analyzed into extractive nitrogen, free amino acids, oligopeptides, ATP and its related compounds, quaternary ammonium bases, and guanidino compounds using specimens collected from April to May of 1992. The major free amino acids in the diploid and the triploid were taurine, proline, alanine, glycine, glutamic acid hypotaurine, glutamine, arginine, aspartic acid, and $\beta-alanine$. There was no conspicuous difference in the constituents of free amino acids between the diploid and the triploid. A lot of hypotaurine was detected in the diploid and the triploid of oyster and the contents of them were 107 mg and 123 mg/100g, respectively. The compounds, glycinebetaine, homarine and trigonelline were found in both the diploid and the triploid. Among them, glycinebetaine was the most prominent in all the samples. The amount of protein, glycogen, extractive nitrogen, oligopeptides, ATP and its related compounds, and free amino acids in the triploid was higher than that of the diploid (p<0.10)

  • PDF

Changes in Taste Characteristics of Traditional Korean Soy Sauce with Ripening Period - Analysis of Nitrogen Compound Contents and Sensory Characteristics - (숙성 기간에 따른 전통 간장의 맛 특성 변화(II) - 질소 화합물 분석 및 관능 특성 -)

  • Joo, Myoung-Sook;Sohn, Kyung-Hee;Park, Hyun-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.4
    • /
    • pp.383-389
    • /
    • 1997
  • This study was carried out in order to analyze the changes in nitrogen containing taste compounds of traditional Korean soy sauce with varying Meju concentrations (Meju-water ratios of 1:4 and 1.3:4) and ripening periods (up to 2 years), and to investigate correlation between sensory characteristics and taste compound contents via contents assay and sensory evaluation of soy sauce samples. Nitrogen compound contents were higher in 1.3:4 than in 1:4 for all nitrogen compounds. Free amino acid contents were highest in soy sauce ripened for 210 days. Among amino acids, glutamic acid was highest concentration. Nucleotides and their related compound contents did not vary with concentrations and were highest in the sample ripened for 210 days. In direct sensory evaluation of soy sauce, overall taste preference showed positive correlation to sweet taste. Likewise, overall taste preference showed positive correlation to umami, nutty, sweet taste in the sensory evaluation of seaweed soup seasoned with soy sauce. Sensory evaluation score was higher in 1.3:4 than in 1:4. According to the correlation assay of taste compound contents and sensory evaluations, nitrogen compounds (such as amino type nitrogen), amino acids (such as glutamic acid, aspartic acid, and lysine, and etc.), nucleotides (such as AMP, IMP, and etc) had significant influence on the sensory characteristics of soy sauce, and therefore we can conclude that these compounds affect the taste and quality of soy sauce.

  • PDF

Purification and Production Conditions of Antimicrobial Compound from Methylotrophic Actinomycetes MO-16 (Methanol 자화방선균 MO-16으로부터 항균성 물질의 정제 및 생산조건)

  • 김현수;이정수
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • A methylotrophic actinomycetes strain MO-16, which produce the antimicrobial compound, was isolated from soil and supposed as Amycolatopsis sp. based on taxonomic studies. The cell-free extract of methanol-grown strain MO-16 showed dehydrogenase activity for methanol and formaldehyde when various electron acceptors were added for oxidation. On the other hand, methanol did not affect the production of antimicrobial compounds, and organic nitrogen sources such as corn steep liquor and peptone were better than inorganic nitrogen sources. These compounds showed broad antimicrobial spectrum to the tested strains such as bacteria and yeast. The antimicrobial comounds were very stable under heat(121$^{\circ}C$), acid(pH2.0), alkali(pH11.0) treatments. These compounds were isolated by ethylacetate extract, silica gel column chromatography and reverse phase HPLC. Two compounds(peak 1 and 2) were detected as antimicrobial compounds through the HPLC analysis. The peak 2 was purified as a single compound and revealed a 98% purity.

  • PDF

Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(I) (암모니아 탈기공정을 이용한 침출수의 암모니아성 질소제거(I))

  • Lee, Byung-Jin;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1893-1904
    • /
    • 2000
  • Nitrogen compounds are one of the major pollutants which cause eutrophication problems of the river or lake and red tides problems of the ocean. Currently available technologies for the removal of nitrogen compounds are mostly biological treatment. However, biological treatment is only effective for the wastewater which contains low concentration of nitrogen compounds. Leachate from solid waste landfill or industrial wastewater which contains high concentration of nitrogen can not be effectively treated by most of the currently available biological treatment technologies. With this connection. the objective of this study is to examine the applicability of ammonia stripping technology for the removal of high concentration of ammonia nitrogen compounds of the leachate from solid waste landfill. It can be concluded that ammonia stripping technology which was placed before the biological treatment process was very effective for the removal of high concentration of ammonium compounds. The chemical cost for the ammonia stripping was 16 percent higher than MLE process, so other methods like sludge recycling are needed for the reduction of operation cost. Further details are discussed in this paper.

  • PDF

A Study on Thermal Characteristic Carbon and other Elements in Suspended Particulates (대기 입자상물질중 탄소(C)등의 열적특성에 관한 조사연구)

  • 황경철
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.31-39
    • /
    • 1990
  • An analytical method for particulate carbon and other elements by using elemental analyzer was investigated. Carbon, hydrogen, and nitrogen was determined as CO$_{2}$, H$_{2}$, and N$_{2}$, respectively. Organic was determined after scparation from elemental carbon(Cae) by volatilization and thermal decomposition in a heated helium flow. With organic materials examined in this reprot, more than 90% of carbon was detected as above 600$^{\circ}$C. But it is considered that a few percents of some compounds were charred above 550$^{\circ}$C. A small amount of Cae was oxidized in the inert atmosphere above 850$^{\circ}$C, but the reason was not explained clearly. Based on the thermal chracteristics of Cao it was found that the optimum temperature of heating in the helium flow of an elemental analyzer for Cao analysis is 630$^{\circ}$C. Carbon in a sample after removing Cao was assumed as Cae and the gramatom ratio of hydrogen to carbon in the sample was 0.4 and less. Rescovery of nitrogen derived from some ammonium salts and nitrates was 100% by two-step measurement with elemental analyzer. By the analytical method investigated in this report, carbon and other elements in suspended particulates(S.P) collected at an urban area in Seoul were measured. There was a good correlation between total nitrogen in SP measured by elemental analyzer and nitrogen estimated form ammonium ions and nitrate ions in SP. The nitrogen from these ions accounts for 80% of the total nitrogen. It is further suggested that the residue(20%) of the total nitrogen is attributed to the other nitrogeneous compounds.

  • PDF

A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor (PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구)

  • Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds (대기 중 질소산화물의 건식침적 특성)

  • Yi, Seung-Muk;Han, Young-Ji;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2000
  • Nitrate dry deposition fluxes were directly measured using knife-leading-edge surrogate surface (KSS) covered with greased strips and a water surface sampler (WSS). The average gaseous flux ($8.3mg/m^2/day$) was much higher than the average particulate one ($3.0mg/m^2/day$). The best fit gas phase mass transfer coefficient (MTC) of $HNO_3$ was obtained by linear regression analysis between measured gaseous flux containing nitrogen compounds and measured ambient $HNO_3$ concentration. The result showed that the MTCs of $HNO_3$ were approximately two times higher than those of $SO_2$. Especially, during the ozone action day, measured gaseous fluxes containing nitrogen compounds were much higher than those ones calculated as the product of measured ambient $HNO_3$ concentration and gas phase MTC of $HNO_3$, which is calculated from MTC of $SO_2$ using Graham's diffusion law. This result indicated that other nitrogen compounds except $HNO_3$ contributed to gaseous flux containing nitrogen compounds into the water surface sampler. The theoretical calculations suggest the contributions of nitrous acid ($HNO_2$) and PAN to the gaseous dry deposition flux of nitrogen containing compounds to the WSS.

  • PDF

Volatile Flavor Constituents of Cooked Oyster Sauce Prepared from Individually Quick-frozen Oyster Crassostrea gigas Extract (IQF 굴(Crassostrea gigas) 복합엑스분을 이용한 굴 소스의 가열향기 성분)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Shin, Tai-Sun;Cho, Jun-Hyun;Lee, In-Seok;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.668-673
    • /
    • 2015
  • The pacific oyster Crassostrea gigas has a desirable taste and flavor that differs from those of other fish and shellfish. In order to develop a high value-added product from individually quick-frozen oyster extract (IQFOE), we prepared an oyster sauce from IQFOE and characterized its volatile compounds using vacuum simultaneous steam distillationsolvent extraction / gas chromatography / mass spectrometry. The moisture, crude protein, crude ash, salinity, pH and volatile basic nitrogen contents of the oyster sauce were 60.6%, 8.2%, 9.2%, 9.3%, 5.7 and 21.0 mg/100 g, respectively. Seventy-six volatile compounds were detected in the cooked odor of the oyster sauce. These volatile compounds included 14 esters, including ethyl acetate, 13 nitrogen- containing compounds, including 2,4,6-trimethyl pyridine, 13 acids, including hexadecanoic acid, 12 alcohols, including ethyl alcohol and 6-methyl heptanol, 6 alkanes, 5 aldehydes, including benzaldehyde, 5 ketones, including 1-(2-furanyl)-ethanone, 4 furans, including 2-furancarboxaldehyde and 2-furanmethanol, 3 aromatic compounds, including d-limonene, and 1 miscellaneous compound. Esters, acids and nitrogen-containing compounds, and alcohols were the most abundant compounds in the odor of the cooked oyster sauce, with some aldehydes, ketones, and furans.