• Title/Summary/Keyword: nitrogen adsorption

Search Result 439, Processing Time 0.028 seconds

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

pH-Controlled Synthesis of Carbon Xerogels for Coin-Type Organic Supercapacitor Electrodes (pH를 조절하여 제조한 카본제어로젤을 이용한 코인타입 유기계 슈퍼커패시터 전극)

  • Ji Chul Jung;Wonjong Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.430-438
    • /
    • 2023
  • In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.

The Effects of Environment-Friendly Diets on the Growth Performance, Nutrient Digestibility, Fecal Excretion, Nitrogen Excretion and Emission Gases in Manure for Growing Pigs (환경친화적인 사료의 급여가 육성돈의 성장 능력, 영양소 소화율, 분 배설량, 분뇨내 질소배설량 및 악취 가스에 미치는 영향)

  • Yoo, J.S.;Cho, J.H.;Chen, Y.G.;Kim, H.J.;Wang, Q.;Hyun, Y.;Ko, T.G.;Park, C.S.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.491-500
    • /
    • 2007
  • Two experiments were used to determine the effects of environment-friendly diets on growth performance, fecal excretion, nitrogen excretion and emission gases in manure for growing pigs. In experiment 1, ninety six crossed pigs(Landrace×Yorkshire×Duroc) were allocated into four treatments. Treatments were AME(adequate ME diet, 3,265 kcal/kg), LME(lower ME diet, 3,100 kcal/kg), LME 0.05(lower ME diet+α- galactosidase & β-mannanase 0.05%) and LME 0.10(lower ME diet+α-galactosidase & β-mannanase 0.10%). Pigs fed AME diet had lower ADFI(Average Daily Feed Intake) than pigs fed other diets(p<0.05). DM(Dry Matter) digestibility in pigs fed AME and LME 0.10 diets had greater than pigs fed LME diet(p<0.05). Energy digestibility is higher in pigs fed AME and LME 0.10 diets than other treatments(p<0.05). In experiment 2, twenty four crossbred pigs(33.71 kg average BW) were used in a 14-d metabolism experiment. The pigs were housed in individual cages equipped with plastic bed flooring. Treatments were CP(Crude protein) 18% without Bacillus sp., CP 18% diet+Bacillus sp. 0.05%, CP 14% without Bacillus sp. and CP 14% diet+Bacillus sp. 0.05%. Nitrogen intake was higher for CP 18% diets than CP 14% diets(p<0.05). DM, N(Nitrogen) and energy digestibility were affected by probiotics(p<0.05). With the high CP in diets, Energy and N digestibility, urine N percent, urine N excretion and total N excretion were increased significantly compared to low CP in diets(p<0.05). Among the treatments, DM and N digestibilities, feces N excretion, N absorption were decreased significantly(p<0.05), however, feces excretion, feces N, urine N percent, urine N excretion and total N excretion were increased significantly(p<0.05) when pigs fed without probiotics diets compare to pigs fed with probiotics diets. DM and N digestibility, feces excretion, feces N excretion, urine N percent, urine N excretion, total N excretion, N absorption and N adsorption ratio were CP×probiotic interactions in p<0.05. Ammonia(p<0.01) and H2S(p<0.05) in manure were lower in CP 14% diets than CP 18% diets. Also, ammonia and H2S in manure were CP×probiotic interactions in p<0.05. In conclusion, low energy and reduction of CP dietary added enzyme and probiotics improved nutrient digestibility and reduced odors emission in manure for growing pigs.

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.

Processing Conditions of the Fermented and Dried Sauces Using Fish Hydrolysates (어류 가수분해물을 이용한 건조젓갈의 제조조건)

  • BAE Tae-Jin;CHOI Ok-Soo;KANG Hoon-I
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.170-174
    • /
    • 1999
  • Proessing conditions for fermented and dried sauces with the underutilized fishes were investigated. Hair tail, gizzard shad, and kangdale were hydrolyzed at $60^{\circ}C$ for 6 hours using $4\%$ Alcalase, and their hydrolysates were separted by molecularporous membrane. The hydrolytic ratios of hair tail, gizzard shad, and kangdale were estimated to be $84.2\%$, $83.6\%$ and $85.1\%$, respectively. Amino nitrogen recoveries were determind to be $73.1\~73.9\%$ by a membrane with molecular weight cutoff 100 dalton and $91.7\~92.5\%$ by a membrane with 500 dalton. Ultrafiltration was very efficient means for removing bitter taste. With the additions of $2\%$ glucose, $4\%$ lactose and $4\%$ skim milk, product yields of hair tail, gizzard shad, and kangdale were determind to be $16.4\%,\;17.2\%$ and $17.0\%$, respectively. Water adsorption rates of hair tail and kangdale showed $5.0\~9.2\%$ and $5.5\~9.6\%$, respectively, under Aw 0.52$\~$0.94. Contents of total nitrogen in the fermented and dried sauces prepared with hair tail, gizzard shad and kangdale were $3.9\%,\;4.1\%$ and $3.7\%$, respectively, and those of amino nitrogen were $3.2\%,\;3.4\%$ and $3.1\%$, respectively. In the fermented and dried sauces prapared with hair tail, gizzard shad and kangdale, the hygroscopities at Aw 0.88 were $6.9\%,\;7.5\%$ and $6.8\%$, respectively, and solubilities under dissolved in water for 30 minutes were $84.6\%,\;83.6\%$ and $93.8\%$, respectively.

  • PDF

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts (Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황)

  • Oh, Hyeonwoo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Catalytic Oxidation of Aromatic Compounds over Spent Ni-Mo and Spent Co-Mo based Catalysts: Effect of Physico-chemical Pretreatments (폐 Ni-Mo 및 폐 Co-Mo계 촉매상에서 방향족 화합물의 촉매산화: 물리화학적 전처리 효과)

  • Shim, Wang Geun;Kang, Ung Il;Kim, Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Transition metal based spent catalysts (Ni-Mo and Co-Mo), which were scrapped from the petrochemical industry, were reused for the removal processes of volatile organic compounds (VOCs). Especially the optimum regeneration procedures were determined using the removal efficiency of VOCs. In this work, the spent Ni-Mo and spent Co-Mo catalysts were pretreated with different physic-chemical treatment procedure: 1) acid aqueous solution, 2) alkali solution, 3) chemical agent and 4) steam. The various characterization methods of spent and its regenerated catalysts were performed using nitrogen adsorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS). It was found that all spent catalysts were found to be potentially applicable catalysts for catalytic oxidation of benzene. The experimental results also indicated that among the employed physico-chemical pretreatment methods, the oxalic acid aqueous (0.1 N, $C_2H_2O_4$) pretreatment appeared to be the most efficient in increasing the catalytic activity, although the catalytic activity of spent Ni-Mo and spent Co-Mo catalysts in the oxidation of benzene were greatly dependent on the pretreatment conditions. The pretreated spent catalysts at optimum condition could be also applied for removing other aromatic compounds (Toluene/Xylene).

Influence of animal wastes on the soil fertility parameters and the growth of corn (Zea mays L.) (축산폐기물(畜産廢棄物)의 이용(利用)에 관(關)한 연구(硏究) : 가축분뇨(家畜糞尿)가 토양화학성(土壤化學性) 및 옥수수 생육(生育)에 미치는 영향(影響))

  • Kim, Jeong-Je;Hong, Byong-Ju;Goh, Yong-Gyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 1991
  • This research was conducted to investigate the treatment effects of the experimental product of an oxidatively treated animal wastes such as feces of cow and pig on the growth and yield of corn, soil fertility parameters, nutrient uptake by corn, and in situ dry matter digestibility. The results are summarized as follows. (1) Growth of corn was favored by treatment of the experimental products as compared to the control. Highest yields were obtained at treatment levels of 2,000 and 2,500kg/10a for the experimental products derived from cow and pig feces, respectively. (2) The contents of soil organic matter were increased 7-41% and 4-60% with treatments of experimental products from cow and pig feces, respectively, as compared to the control. The available soil phosphorus levels were increased significantly with the treatments. Treatment of product from the cow feces resulted in a slight increase of the potassium adsorption ratio (KAR). (3) No significant difference was observed in uptake of total nitrogen and phosphorus between the treatments and the control. Uptake of cation by corn was in the order of $K_2O$ >CaO>MgO. (4) In situ dry matter digestibility ratio was increased with Incubation time. However, no significant difference in digestibility was detected for the corn samples produced by treating different levels of the experimental products.

  • PDF