• Title/Summary/Keyword: nitrogen ($N_2$)

Search Result 4,403, Processing Time 0.037 seconds

Analysis of the microstructure of reactively sputtered Ta-N thin films (반응성 스퍼터링방법으로 증착된 Ta-N 박막의 미세구조 분석)

  • 민경훈;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.253-260
    • /
    • 1994
  • Ta-N films were reactively sputter deposited by dc magnetron sputtering from a Ta target with a various Ar-N, gas ratio. Electrical resistivity of pure Ta film was 150$\mu$$\Omega$cm and decreased initially with nitrogen addition, and then increased to a value of 220$\mu$$\Omega$-cm~260$\mu$$\Omega$-cm at 9%~23% nitrogen partial flow. Rutherford backscattering spectrometry(RBS) and Auger electron spectroscopy (AES) analysis show that nitrogen content in the film is increased with the nitrogen partial flow. The film contains 58at.% nitrogen at 36% nitrogen partial flow. Both the phase and the microstructure of the as-deposisted films were investigated by x-ray diffractometry(XRD) adn transmission electron microscopy (TEM) at various nitrogen content. The phase of pure Ta film is identified as $\beta$-Ta with a 200$\AA$~300$\AA$ grain size. The phase of Ta film is changed to bcc-Ta as small amount of nitrogen is added. Crystalline Ta2N film was deposited at 24at.% nitrogen content. Amorphous phase is formed over a range of nitrogen content from about 33at.% to 35at.% while crystalline fcc-TaN is observed to form at 39at.%~48at.% nitrogen content.

  • PDF

Effects of Nitrogen Application on Growth and Bioactive Compounds of Chrysanthemum indicum L. (Gamgug) (질소시비가 감국의 생육 및 유효성분에 미치는 영향)

  • Kim, Dong-Kwan;Lee, Kyung-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.363-368
    • /
    • 2009
  • To fulfill the increasing demand for a high quality of flower, we investigated the effects of nitrogen application on plant growth, yield and bioactive compounds of Chrysanthemum indicum L.. C. indicum L. was cultivated in a pot scale, and nitrogen applied with the level of 0 (N0), 50 (N50), 100 (N100), 150 (N150), 200 (N200) and $300\;(N300)\;kg\;ha^{-1}$ to suggest optimum rate of nitrogen fertilization. Phosphate and potassium applied the same amount of $80-80\;kg\;ha^{-1}$ ($P_2O_5-K_2O$) in all treatments. Growth characteristics and yields of C. indicum L. were significantly affected by nitrogen application. Maximum yield achieved in 265 and $295\;kg\;ha^{-1}$ N treatment on the whole plant and the flower parts, respectively. The nitrogen content and uptake of whole plant significantly increased by the increase of nitrogen application. Five major components of essential oil, $\alpha$-pinene, 1,8-cineol, chrysanthenone, germacrene-D, and $\alpha$-curcumene in flowerheads of C. indicum L. occupied approximately 40% of peak area, germacrene-D decreased by the increase of nitrogen application among them. However, cumambrin A contents in the flower parts of C. indicum L. were affected negatively by the increase of nitrogen application, but total yields of cumambrin A in flower part significantly increased. Conclusively, nitrogen fertilization could increase the yield of flowerheads. The optimum application level of nitrogen fertilizer might be on the range of $265-295\;kg\;ha^{-1}$ in a mountainous soil.

Atmospheric Acid Deposition : Nitrogen Saturation of Forests (대기 산성 강하물 : 삼림의 질소 포화)

  • Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.305-321
    • /
    • 2006
  • Atmospheric Acid Deposition: Nitrogen Saturation of Forests: Volume weighted annual average wet deposition of nitroge at 33 sites in Korea during 1999-2004 ranged 7.28 to $21.05kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$ with average $12.78kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$, which values are similar level with nitrogen deposition of Europe and North America. The temperate forests that suffered long-term high atmospheric nitrogen deposition are gradually saturated with nitrogen. Such nitrogen saturated forest watersheds usually leach nitrate ion ($NO_3^-$) in stream water and soil solution. It may be likely that Korean forest ecosystems are saturated by much nitrogen deposition. In leaves with nitrogen saturation ratios of N/P, N/K and N/Mg are so enhanced that mineral nutrient system is disturbed, suffered easily frost damage and blight disease, reduced fine-root vitality and mycorrhizal activity. Consequently nitrogen saturated forests decrease primary productivity and finally become forest decline. Futhermore understory species are replaced the nitrophobous species by the nitrophilous one. In soil with nitrogen saturation uptake of methane ($CH_4$) is reduced and emission of nitrogen monoxide (NO) and nitrous oxide ($N_{2}O$) are increased, which gases are greenhouse gas accelerating global warming.

Influence of Nitrogen moieties on CO2 capture of Carbon Aerogel

  • Jeon, Da-Hee;Min, Byung-Gak;Oh, Jong Gab;Nah, Changwoon;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the $CO_2$ selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by $N_2$ adsorption-desorption isotherms at 77 K. The $CO_2$ adsorption capacity was investigated by $CO_2$ adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high $CO_2$ capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the $CO_2$ adsorption capacity was strongly affected by the nitrogen moieties.

The Formation of Nitride and Enhancement of Mechanical Properties of Al Alloy by Nitrogen Implantation (Al합금에서 질소이온주입에 의한 질화물 형성과 기계적 특성 향상)

  • Jeong, Jae-Pil;Lee, Jae-Sang;Kim, Kye-Ryung;Choi, Byung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.235-239
    • /
    • 2006
  • The aluminum nitride(AlN) layer on Al7075 substrate has been formed through nitrogen ion implantation process. The implantation process was performed under the conditions : 100 keV energy, total ion dose up to $2{\times}10^{18}\;ions/cm^2$. XRD analysis showed that aluminum nitride layers were formed by nitrogen implantation. The formation of Aluminum nitride enhanced surface hardness up to 265HK(0.02 N) from 150HK(0.02 N) for the unimplanted specimen. Micro-Knoop hardness test showed that wear resistance was improved about 2 times for nitrogen implanted specimens above $5\;{\times}\;10^{17}\;ions/cm^2$. The friction coefficient was measured by Ball-on-disc type wear tester and was decreased to 1/3 with increasing total nitrogen ion dose up to $1\;{\times}\;10^{18}ions/cm^2$. The enhancement of mechanical properties was observed to be closely associated with AlN formation. AES analysis showed that the maximum concentration of nitrogen increased as ion dose increased until $5\;{\times}\;10^{17}\;ions/cm^2$.

Nitrogen Budgets of Agriculture and Livestock in South Korea at 2010 (2010년도 대한민국 농업 및 축산업지역의 질소 유입 및 유출 수지)

  • Nam, Yock-Hyun;An, Sang-Woo;Jung, Myung-Sook;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.204-213
    • /
    • 2012
  • The objectives of this research were to estimate nitrogen budgets in agriculture and livestock in 2010, and to evaluate nitrous oxide ($N_2O$) emission by a local government. Input-output budgets for nitrogen were categorized into two sections including agriculture and livestock. Fertilizer, deposition, fixation, compost, irrigation, and feed were used as the nitrogen inputs while crop production, crop uptake, denitrification, volatilization, leaching, compost, and ocean disposal were used as the nitrogen outputs. Annual nitrogen input and output for agriculture and livestock were 1,148,848 N ton/yr and 610,380 N ton/yr respectively indicating the decrease of the nitrogen input and output, compared to our previous researches in 2005 and 2008. Total nitrogen input in 16 local government was estimated resulting that $N_2O$ emission was the highest for Jeonnam (2,574 ton/yr) and the lowest for Seoul (7 ton/yr).

Pitting Corrosion Behavuor of N2+ ion Implanted AISI 316L Stainless Steel Compacts (질소 이온주입된 AiSi 316L 스테인리스강 소결체의 공식거동)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The aim of this study is to develop sintered stainless steels (SSS) with good mechanical strength, wear resistance, and corrosion resistance by nitrogen ion implantation on the Culated SSS surface. Stainless steel compacts containg Cu (2-10 wt%) were prepared by electroless Cu-pating method which results in the increased3 homogenization in alloying powder. Nitrogen ion implantation was carried out by using N2 gas as the ion source. Nitrogen ions were embedded by an acceleratol of 130keV with doese $3.0\times10^{17}\;ions/\textrm{cm}^2$ on the SSS at $25^{\circ}C$ in$2\times10^{-6}$ torr vacuum. The nitrogen ion implanted SSS obtained from anodic ploarization curves revealed higher corrosion potential than that of nitrogen ion unimplante one. And nitrogen ion implanted 316LSSS had good resistance to pitting corrosion due to the synergistic effect of Mo and N, and the inhibition of $NH_4\;^+$<\TEX>, against $CI^-$<\TEX>.

  • PDF

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

Effects of Nitrogen Contents on the Nitriding Characteristics of the Micro-Pulse Plasma and Post Oxidation Treated SCM440 Steel (SCM440강의 마이크로 펄스 플라즈마 질화 및 후산화처리시 질소농도에 따른 특성변화)

  • Lee, S.K.;Chung, I.S.;Lee, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • This study was carried out to investigate the surface characteristics of SCM440 steel nitrided with various nitrogen contents for 7 hours at $520^{\circ}C$ by using micro-pulse plasma nitriding apparatus of hot wall type. The effects of oxidation treatment was also investigated on plasma nitrided in 30% nitrogen and post oxidized SCM440 steel at $500^{\circ}C$ in $H_2O$ atmosphere. The ${\gamma}^{\prime}-Fe_4N$ and ${\varepsilon}-Fe_{2-3}N$ phases were detected in compound layer of the nitrided steel. As the content of nitrogen in plasma gas increased with 30, 50, 70% on the micro-pulse plasma nitriding for SCM440 steel, the thickness of compound, diffusion layer and the surface hardness were increased. From the wear test results, the best wear resistance was appeared in the condition of ductile ${\gamma}^{\prime}-Fe_4N$ phase formed specimen at 30% nitrogen, whereas that of the treated with 50% and 70% nitrogen decreased owing to the exfoliation of brittle ${\varepsilon}-Fe_{2-3}N$ phase in the compound layer. On the nitrided and subsequently oxidized SCM440 steel, the surface layer consisted of $Fe_3O_4$, ${\gamma}^{\prime}-Fe_4N$, and ${\varepsilon}-Fe_{2-3}N$ phases. In these treatments, the dissolution of nitrides affect hardness and hardening depth in compound and diffusion layers. For the nitrided in 30% nitrogen and post oxidized specimen at $500^{\circ}C$ for 1 hour, the wear resistance was lower than that of the only nitrided one in 30% nitrogen but higher than those of the nitrided ones in 50 and 70% nitrogen.

  • PDF

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.