• 제목/요약/키워드: nitrogen

검색결과 15,944건 처리시간 0.042초

Nitrogen Control in Corynebacterium glutamicum: Proteins, Mechanisms, Signals

  • Burkovski, Burkovski;Andreas, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.187-194
    • /
    • 2007
  • In order to utilize different nitrogen sources and to survive in a situation of nitrogen limitation, microorganisms have developed sophisticated mechanisms to adapt their metabolism to a changing nitrogen supply. In this communication, the recent knowledge of nitrogen regulation in the amino acid producer Corynebacterium glutamicum is summarized. The core adaptations of C. glutamicum to nitrogen limitation on the level of transcription are controlled by the global regulator AmtR. Further components of the signal pathway are GlnK, a $P_{II}-type$ signal transduction protein, and GlnD. Mechanisms involved in nitrogen control in C. glutamicum regulating gene expression and protein activity are repression of transcription, protein-complex formation, protein modification by adenylylation, change of intracellular localization, and proteolysis.

동대만과 오지리 연안에 서식하는 해초(Zostera marina)내 질소함유율의 계절적 변화 (Seasonal Nitrogen Dynamics of Zostera marina Inhabited in Dongdae Bay and Ojiri)

  • 김민섭;이성미;신경훈
    • 환경생물
    • /
    • 제24권2호
    • /
    • pp.186-194
    • /
    • 2006
  • Nitrogen dynamics of Seagrass Zostera marina were investigated in both Dongdae Bay and Ojiri from March to August, 2004. All seagrass samples were separated into four fractions such as leaves (new and adult), sheath and rhizome in order to understand temporal variations of nitrogen content in different fractions of Zostera marina. There are temporal variations of shoot production rates and total nitrogen contents in their different fractions at both study areas. Leaf production were almost 4 to 5 fold higher in summer than in winter. The irradiance is the primary factor controlling the leaf production of Zostera marina in both sites although water temperature also influence its productivity. Nitrogen contents of leaves were overall low in summer than in winter, but nitrogen content of rhizome increased during the summer season. In addition, nitrogen contents of new leaves were mostly higher than adult leaves in spite of lower nitrogen content of new and adult leaves in high productivity period. This result suggests that Zostera marina seems to have significant translocation ability of nitrogen in a shoot. The nitrogen content of leaf tissue may reflect nutritional nitrogen availability.

CONTROL OF NITROGEN CONTENT FOR THE IMPROVEMENT OF HAZ

  • Bang, Kook-soo;Kim, Byong-chul;Kim, Woo-yeul
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.229-234
    • /
    • 2002
  • The variation of HAZ toughness with nitrogen content and weld cooling rate was investigated and interpreted in terms of both microstructure and the amount of free nitrogen. The presence of free nitrogen in HAZ was investigated by internal friction measurement and its amount was measured by hydrogen hot extraction analysis. Both nitrogen content and weld cooling rate influenced HAZ microstructure and high toughness was obtained at a mixed microstructure of acicular ferrite, feffite sideplate and polygonal ferrite. If nitrogen content is too low or cooling rate is too fast, bainitic microstructure is obtained and toughness is low. On the other hand, if nitrogen content is too high or cooling rate is too slow, coarse polygonal ferritic microstructure is obtained and toughness is deteriorated again. ill addition to the microstructural change, high nitrogen content also resulted in a large amount of free nitrogen. Therefore, nitrogen content should be kept as low as possible even if the mixed micostructure is obtained. In this experimental condition, the maximum toughness was obtained at 0.006% nitrogen content when weld cooling time ($\Delta$t$_{8}$5/)) is 60s.TEX>5/)) is 60s.

  • PDF

질소종류 ならび 질소시비량の 상위が 생육 , 생리 , 수량병びに 각 엑끼스 ( エキス ) , Ligustilide , Butylidene phthalide 함량に급ぼす영향 (Effect of various kind and amount of nitrogen fertilizers on the Plant growth , physiological , yield and extracts .ligustilide, butylidene phthalie contents of crude drug 'Tou-Ki' (Angelica acutiloba Kitagawa))

  • 홍리앙
    • 한국자원식물학회지
    • /
    • 제5권1호
    • /
    • pp.57-68
    • /
    • 1992
  • The effects of various kind and amount of nitrogen fertilizers on the plant grorth. physiological , yield and extracts. ligustilide, butylidene phthalide contents of curdsdrug "Tou-ki" (AnTelica acutiloba Kitagawa) were investigated in 1989. Five plots variouskind of nitrogen fertilizers. Namely, no nitrogen, urea. ammonium nitrate, ammoniumchloride and control plot of ammonium sulfate. The other, by providing five plotsdifferent composed ratio of nitrogenous fertilizers. containing no nitrogen (No. o) .0.5-fold nitrogen (No s), control plot of 1.0-fold nitrogen(Nl.o). 1.5-fold nitrogen(Nl s)and 2.0-fold nitrogen Na. o), but nitogen was used the ammonium sulfate. The results showedthat the crude drug "Tou-ki" can ammonium chloride be produced in good yield, displayingboth good plant growth and remarkable physiologically-active conditions, and it can beproduced such that the extracts is maximized. Additionally, using methods of gaschromatography (GC) , it was established that ligustilide and butylidene phthalide, majorcomponents in the crude drug was recovered in a good yield from the fully grown plants.The other, the plant growth, the physiologically-active, the weight of whole plant, theyield of extracts and ligustilide, butylidene phthalide were seen to be best at the plotof 2.0-fold nitrogen and according to the increase or decrease of nitrogen decreasedgradually. Therefore. about 2 fold of standard quantity seems to be the most suitablequantity of nitrogen for "Tou-ki" cultivation .uot;Tou-ki" cultivation .ion .

  • PDF

자유로운 식이와 활동을 유지하는 한국 여대생의 에너지와 단백질대사에 대한 연구(2) : 질소섭취와 평형 (Nutritional Status and Requirements of Protein and Energy in Female Korean College Students Maintaining Their Usual and Activity(2) : Nitrogen Intake and Balance)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • 제28권4호
    • /
    • pp.259-267
    • /
    • 1995
  • A study was conducted to investigate nitrogen balance and to estimate daily nitrogen requirement in 43 Korean female college students students maintaining their usual diet and activity levels. Nitrogen intake and excretion were measured in two separate peroids about one month apart, each period lasting for 3 days. Nitrogen intake was assessed by duplicate portion analysis of diet, and N excretion in faces and urine were measured during the study period. Mean daily nitrogen intake level was 129.3mg/kg B.W and the apparent digestibility of nitrogen was 76%. Mean daily urinary nitrogen excretion was 113.5mg/kg BW. 895 of total nitrogen intake. Mean daily nitrogen balance of subjects was -14.5mg/kg BW. Mean daily requirements of nitrogen for 0 balance, calculated by regression analysis of N balance and energy-adjusted N intake. were 1) 197.mg/kg B.W with the present energy intake level of the study subjects. 2) 157mg/kg B.W when energy intake is sufficient to maintain energy balance, and 30 130mg/kg B.W. when energy intake is Korean RDA level for moderate activity. When energy intake level is sufficient to meet their requirement, daily protein requirement for 0 balance is about 1.0g/kg B.W. The results of this study indicate that nitrogen intake level of young female college students is not sufficient to meet their requirements, and they should increase protein intake together with increase in energy intake.

  • PDF

The Importance of Nitrogen Release and Denitrification in Sediment to the Nitrogen Budget in Hiroshima Bay

  • KIM Do-Hee;MATSUDA Osamu
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.779-786
    • /
    • 1996
  • The main purpose of this study was to estimate the role of dissolved inorganic nitrogen (DIN) released from sediment and denitrification process in sediment on the nitrogen budget of Hiroshima Bay by means of collecting data on distributions and budgets of nitrogen and phosphorus in the bay, DIN fluxes across sediment-water interface and denitrification rates in the sediments of the same area. The TN : TP and DIN:DIP atomic ratios of the discharged freshwater were about 26 and 21, respectively. The standing stocks in the seawater of the TN : TP atomic ratio varied from 8 to 14 with an annual mean value of 11, while the DIN : DIP atomic ratio varied from 10 to 15 with an annual mean value of 12 in the bay. The residence time of nitrogen and phosphorus were estimated to be about 109 days and 200 days in the bay, respectively. The proportion of DIN released from sediment and denitrification rate to the loading of total nitrogen into Hiroshima Bay were $45\%\;(37\~82\%)\;and\;13\%(0.0\~37\%)$, respectively, and the amount of nitrogen through denitrification process was 6.5 times larger than the outflow of nitrogen from the bay. The results show that DIN released from sediment and denitrification process in sediment play important roles on the nitrogen budget in Hiroshima Bay.

  • PDF

Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease

  • Jeon, Junhyun
    • 식물병연구
    • /
    • 제25권3호
    • /
    • pp.103-107
    • /
    • 2019
  • Roles of nutrients in controlling plant diseases have been documented for a long time. Among the nutrients having impact on susceptibility/resistance to crop diseases, nitrogen is one of the most important nutrients for plant growth and development. In rice plants, excess nitrogen via fertilization in agricultural systems is known to increase susceptibility to the rice blast disease. Mechanisms underlying such phenomenon, despite its implication in yield and sustainable agriculture, have not been fully elucidated yet. A few research efforts attempted to link nitrogen-induced susceptibility to concomitant changes in rice plant and rice blast fungus in response to excess nitrogen. However, recent studies focusing on phytobiome are offering new insights into effects of nitrogen on interaction between plants and pathogens. In this review, I will first briefly describe importance of nitrogen as a key nutrient for plants and what changes excess nitrogen can bring about in rice and the fungal pathogen. Next, I will highlight some of the recent phytobiome studies relevant to nitrogen utilization and immunity of plants. Finally, I propose the hypothesis that changes in phytobiome upon excessive nitrogen fertilization contribute to nitrogen-induced susceptibility, and discuss empirical evidences that are needed to support the hypothesis.

Nitrogen Use Efficiency of High Yielding Japonica Rice (Oryza Sativa L.) Influenced by Variable Nitrogen Applications

  • Kang, Shin-Gu;Hassan, Mian Sayeed;Ku, Bon-Il;Sang, Wan-Gyu;Choi, Min-Kyu;Kim, Young-Doo;Park, Hong-Kyu;Chowdhury, M. Khalequzzaman A.;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • 한국작물학회지
    • /
    • 제58권3호
    • /
    • pp.213-219
    • /
    • 2013
  • A field study was conducted to understand nitrogen use efficiency of high yielding Japonica rice varieties under three levels of nitrogen fertilizer (90, 150 and 210 kg N $ha^{-1}$) in Iksan, Korea. Two high yielding rice varieties, Boramchan and Deuraechan, and an control variety, Dongjin2, were grown in fine silty paddy. Nitrogen use efficiencies (NUE) were 83.3, 56.3, and 41.2 in 90, 150, and 210 kg N $ha^{-1}$ fertilizer level, respectively. Total nitrogen uptake varied significantly among nitrogen levels and varieties. Variety Dongjin2 showed the highest nitrogen uptake efficiency (NUpE), while Boramchan and Deuraechan showed higher nitrogen utilization efficiency (NUtE). However, Nitrogen harvest index (NHI) was higher in Boramchan (0.58) than Deuraechan (0.57) and Dongjin2 (0.53). Rough rice yield showed linear relationship with total nitrogen uptake ($R^2$=0.72) within the range of nitrogen treatments. Boramchan produced significantly higher rough rice yield (8546 kg $ha^{-1}$) which mainly due to higher number of panicles per $m^2$ compared to Deuraechan (7714 kg $ha^{-1}$). Deuraechan showed higher number of spikelets per panicle, but showed lower yield due to lower number of panicle per $m^2$. Rice varieties showed different nitrogen uptake ability and NUE at different nitrogen level. Plant breeders and agronomist should take advantage of the significant variations and relationships among grain yield, NUpE, and NUE.

버어리종 잎담배의 수량, 품질 및 이화학성에 미치는 포지비옥도, 품종 및 질소시용량의 영향 (EFFECTS OF FIELD PRODUCTIVITY, VARIETY AND NITROGEN RATE ON THE YIELD, QUALITY AND PHYSICO-CHEMICAL CHARACTERISTICS OF BURLEY TOBACCO)

  • 김상범;김용규;한철수
    • 한국연초학회지
    • /
    • 제12권2호
    • /
    • pp.91-101
    • /
    • 1990
  • A field experiment was conducted to find out the effects of field productivity, variety and nitrogen rate on the yield, quality, chemical constituents and physical properties of burley cured leaf in three field with different productivity(Degree of field productivity: A ; high, B ; medium, C : low) during successive two years(1988~89). The yield and quality were remarkably lowered when nitrogen fertilizer being applied much in low productive field. As compared with Burley 21, KB101 showed high yield, particularly the yield of KB101 in low productive field was relatively high. The effect of nitrogen rate on the yield was somewhat different according to field productivity and production year. When the nitrogen fertilizer being applied above 22.5kg/10a, the added nitrogen had no effect on the yield. Total nitrogen content of cured leaf grown in low productive field was high while total alkaloid was low, therefore total alkaloid/total nitrogen ratio was remarkably low. The lightness, red and yellow color of cured leaf grown in low productive field was remarkably low. As compared with Burley 21, the contents of total alkaloid and total nitrogen and shatter resistance index of cured leaf was somewhat low, while the filling power, lightness, red and yellow color were slightly high. Total nitrogen content of cured leaf was increased remarkably by nitrogen addition, but total alkaloid was not increased though the nitrogen fertilizer being applied above 22.5kg/10a. The filling power and shatter resistance index of cured leaf grown in high nitrogen plot, and the lightness and yellow color were low while the red color was relatively high. It comes into question that the visual quality being increased as well as increment of yield and nitrogenous compounds by nitrogen addition in high productive field. In low productive field, it is considerable that nitrogen addition for high yield should be prohibited because it causes the decrement of yield and quality, on the contrary.

  • PDF

Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동 (Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata)

  • 이현희;배재근
    • 대한환경공학회지
    • /
    • 제29권4호
    • /
    • pp.460-465
    • /
    • 2007
  • 본 연구에서는 고농도 암모니아성질소로 오염된 고체배지로부터 분리해 낸 Leclercia adecarboxylata를 이용하여 암모니아성질소의 제거특성 및 기작을 파악하여 폐수처리의 적용가능성에 대해 살펴보았다. 질소제거에 있어서 가장 널리 알려진 생물학적 질산화와 후탈질에 의한 질소의 대기로의 방출이 아닌 질소합성균주를 이용한 질소의 체내합성을 이용한 영양물질의 제거 가능성에 대해 접근해 보았다. L. adecarboxylata는 무염분조건에서 암모니아성질소의 제거와 균체중식이 가장 왕성했으나, 염분이 4%를 넘어서게 되면 그 효율은 급격히 저하되었다. 약 80 mg/L의 암모니아성질소는 20시간 이내에 거의 대부분 제거되었으나, 500 mg/L인 시료는 탄소원의 부족으로 인해 50시간 이상 처리후에도 50%의 제거율에도 미치지 못해 탄소원이 많을수록 질소제거율은 높음을 알 수 있었다. 탄소원이 모두 소모되고 난 이후에는 더 이상 질소제거는 이루어지지 않았으나, 탄소원을 추가로 공급했을 때 제거효율은 다시 증가했다. 시료의 pH는 미생물의 증식에 의해 8에서 6.36까지 감소했다. 암모니아성질소가 제거되는 동안 아질산성질소와 질산성질소의 축적은 일어나지 않았고, TKN값은 큰 차이를 보이지 않은 것으로 미루어 볼 때 유기질소로의 합성을 추측할 수 있었다. 유기질소 중 단백질의 농도를 측정해 본 결과 초기시료에서는 불검출 되었으나, 48시간 경과후의 시료에는 193.1 mg/L의 단백질이 검출 되었다. 따라서 L. adecarboxylata는 암모니아성질소를 유기질소로 합성하는 능력이 탁월하여 폐수중의 암모니아성질소의 제거에 이용가치가 클 것으로 판단된다.