• Title/Summary/Keyword: nitrogen:

Search Result 16,004, Processing Time 0.046 seconds

Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation

  • Lazzarini, Isis;Detmann, Edenio;Filho, Sebastiao de Campos Valadares;Paulino, Mario Fonseca;Batista, Erick Darlisson;Rufino, Luana Marta de Almeida;Reis, William Lima Santiago dos;Franco, Marcia de Oliveira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1120-1128
    • /
    • 2016
  • The objective of this work was to evaluate the effects of supplementation with nitrogen and starch on the nutritional performance of grazing cattle during the rainy season. Five rumen cannulated Nellore steers, averaging 211 kg of body weight (BW), were used. Animals grazed on five signal grass paddocks. Five treatments were evaluated: control (forage only), ruminal supplementation with nitrogen at 1 g of crude protein (CP)/kg BW, ruminal supplementation with starch at 2.5 g/kg BW, supplementation with nitrogen (1 g CP/kg BW) and starch (2.5 g/kg BW), and supplementation with nitrogen (1 g CP/kg BW) and a mixture of corn starch and nitrogenous compounds (2.5 g/kg BW), thereby resulting in an energy part of the supplement with 150 g CP/kg of dry matter (DM). This last treatment was considered an additional treatment. The experiment was carried out according to a $5{\times}5$ Latin square design following a $2{\times}2+1$ factorial arrangement (with or without nitrogen, with or without starch, and the additional treatment). Nitrogen supplementation did not affect (p>0.10) forage intake. Starch supplementation increased (p<0.10) total intake but did not affect (p<0.10) forage intake. There was an interaction between nitrogen and starch (p<0.10) for organic matter digestibility. Organic matter digestibility was increased only by supplying starch and nitrogen together. Nitrogen balance (NB) was increased (p<0.10) by the nitrogen supplementation as well as by starch supplementation. Despite this, even though a significant interaction was not observed (p>0.10), NB obtained with nitrogen plus starch supplementation was greater than NB obtained with either nitrogen or starch exclusive supplementation. Supplementation with starch and nitrogen to beef cattle grazing during the rainy season can possibly improve digestion and nitrogen retention in the animal.

Estimating urinary energy value of rat from the urinary nitrogen content (쥐의 뇨질소함량(尿窒素含量)으로부터 뇨(尿) Energy 가(價)의 산출법(算出法))

  • Han, In-K.
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.29-33
    • /
    • 1966
  • This experiment was conducted to study the relationship between the energy value and the nitrogen content in the rat urine. Thirteen rats for ad libitum feeding group and 16 rats for two-meal group were employed in this experiment. The experimental period consisted of 22 days with a preliminary period of 10 days. During the last eight days of the experiment the urine was collected quantitatively. The rats fed two-meal per day excreted significantly (p<0.005) more nitrogen and energy in the urine than those fed ad libitum. A linear relationship between the energy concentration and nitrogen content was found. The urinary energy value was increased as the urinary nitrogen content was increased. A prediction equation was derived to compute the energy value from the content of nitrogen as follows: Y=8.924X+0.182 $S_{y{\cdot}x}=0.788$ where Y=urinary energy(kcal/100 ml) X=urinary nitrogen(gm/100 ml) Since the standard deviation of estimate is in small magnitude (0.788 kcal) when it is compared with the amount of intake of gross energy, digestible energy or metabolizable energy, this equation can be used safely to estimate the energy value from nitrogen content. Consequently, considerable amound of time and labor for the actual determination of energy can be saved. The ratio of energy to nitrogen was found to be 9.4 for ad adlibitum group and 8.6 for two-meal group. No significant difference between two group in this respect was observed.

  • PDF

Analysis of Soil Total Nitrogen and Inorganic Nitrogen Content for Evaluating Nitrogen Dynamics

  • Lee, Seul-Bi;Sung, Jwa-Kyung;Lee, Ye-Jin;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.100-105
    • /
    • 2017
  • Various methods for assessing soil total nitrogen (TN) and inorganic N content have been developed to manage nutrient and to understand N cycle in soil. This paper address the technical procedures in arable soil samples to conduct soil sampling, sample preparation, and measuring total N and inorganic N. Among various methods for measuring soil total nitrogen contents, Kjeldahl distillation and Indophenol blue method have widely used due to reliability and economic advances. Also, two methods can analyze more samples at the same time compared with other nitrogen measuring methods. For evaluating inorganic N content, mainly in forms of nitrate-N ($NO_3{^-}-N$) and ammonium-N ($NH_4{^+}-N$), extraction with a single reagent such as 2M KCl has been employed, followed by Kjeldahl distillation or indophenol blue methods.

Ammonium Ion Removal and Regeneration for Zeolite Filtration in Drinking Water Treatment (정수처리에서 제올라이트 여과를 이용한 암모니아성질소의 제거와 재생)

  • Kim, U Hyang;Lee, Seung Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.661-665
    • /
    • 2004
  • As the concentration of ammonium nitrogen could be reached 2~3 mg/L in the winter in the river. It was clear that the excessive concentration of chlorinated organics could be produced with the increase of chlorine addition to remove ammonium nitrogen. In the innovative ammonium nitrogen removal process, zeolite adsorption is very efficient as substitute for rapid sand filtration without other adverse quality change in the water. This study is conducted to evaluate the feasibility of ammonium nitrogen removal and regeneration by zeolite adsorption in drinking water treatment. Also, the reuse possibility of zeolite is evaluated to change the removal efficiency of ammonium nitrogen through several times of regeneration. The ammonium nitrogen was not removed in sand filter, but it was almost removed in zeolite filter during 7 days. The sand and zeolite filters have a similar result of turbidity removal. Therefore, zeolite filtration was confirmed the removal of turbidity and ammonium nitrogen as a media. When compared KCl with NaCl as a chemical for zeolite regeneration, it is demonstrated that KCl was more efficient than NaCl in the ability of zeolite regeneration. The adsorption rate of ammonium nitrogen was almost not decreased in the results of several times of regeneration. It is indicated that both zeolite and regeneration solution were possible to reuse without variation of regeneration rate through this study.

Rate Effects of Swine Manure Fermented with Sawdust on Efficiency of Nitrogen Utilization of Silage Corn and Soil Fertility

  • Yook, Wan-Bang;Park, Dong-Ho;Park, Ki-Chun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • This study was carried out to examine the effects of animal manure on efficiency of the nitrogen utilization of silage corn (Zea mays L.) and soil fertility. The experiment was conducted on the field plot at Gongiam, Kwangju, Kyunggi-Do for 3 years, from 1996 to 1998, and arranged in split-plot design with three replications. The main plots were two kinds of composts such as swine manure fermented with sawdust (SMFWS) and swine manure fermented without sawdust (SMF). Subplots were the nitrogen fertilization rate (0, 100, 200, 300 and 400kgNhalyear). The nitrogen (N) yield increased as the nitrogen fertilization rate increased up to a rate of 300 kg Nha, but decreased at rate of 400 kg Nlha. Nitrogen yield in SMF treatments was higher than that of SMFWS treatments. But there were no significant differences between SMFWS and SMF treatments. Organic matter (OM) content of the soils in SMFWS was higher than that of SMF, &d was not significantly different between SMFWS and SMF treatments. OM content increased with increasing the nitrogen fertilization rate. Total nitrogen (TN) content of the soils increased as the nitrogen fertilization rate increased. No difference of TN content was found between SMFWS and SMF treatments. (Key words : Swine manure, Compost, Corn, Sawdust, Nutritive value)

  • PDF

Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources

  • Lee, Kwang-Yong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.979-985
    • /
    • 2002
  • The possibility of microalgal nitrogen treatment was tested in wastewaters with a low carbon/nitrogen (C/N) ratio. Chlorella kessleri was cultured in the two different artificial wastewaters with nitrate as a nitrogen source: one contained glucose for an organic carbon source and the other without organic carbon sources. The growth rates of the two cultures were almost identical when the aeration rate was over 1 vvm. These results suggest that microalgae could successfully remove nitrogen from wastewater, as far as the mass transfer of $CO_2$, was not limited. Nitrate was successfully reduced to below 2 mg $NO_3^-$-N/ml from the initial nitrate concentration of 140 mg $NO_3^-$-N/ml in 10 days, even in the wastewater with no organic carbon source. Similar results were obtained when ammonium was used as the sole nitrogen source instead of nitrate. Higher concentrations of nitrogen of 140, 280, 560 and 1,400 mg/ml were also tested and similar amounts of nitrogen were removed by algal cultures without showing any substrate inhibition.

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

intake/Balanc of Dietary Protein in Korean College Women (한국인 일부 여대생에서 단백질 흡수 및 평형)

  • 오승호;최인선
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.4
    • /
    • pp.523-529
    • /
    • 1997
  • This study was conducted to obtain accurate data on the intake, digestibility and nitrogen balance of protein in Korean college women. Subjects were 8 female college students, aged from 21 to 23, and maintained their menu and life patterns regular during a 4- week study. The same amount of diet that the subjects had consumed, and feces and urine were collected and measured to extract their nitrogen content by Kjeldahl method. From this data, apparent digestibility and the body nitrogen balance were estimated by determing daily protein intake and excretion. The daily protein intake was 56.9$\pm$1.4g and daily fecal protein loss was 6.3$\pm$0.2g. The apparent digestibility of protein was 89.6$\pm$0.7$\%$. The daily nitrogen intake measured by Kjeldahl method was 9.43$\pm$0.2g. The urinary nitrogen excretion was 7.64$\pm$0.23g and fecal nitrogen excretion was 1.02$\pm$0.03g. The nitrogen balance indicated a positive balance of 0.45$\pm$0.18g. (Korean J Community Nutrition 2(4) : 523-529, 1997)

  • PDF

Effects of Inorganic Nitrogen released from Roots on the Nitrogen Metabolism (뿌리 방출물중 무기태질소가 체내성분 변이에 미치는 영향)

  • 소상섭
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.5-14
    • /
    • 1979
  • In several leguminous plants such as acasia, arrowroot and bushclover, growth rate and contents of nitrogen, phosphorus and potassium in the tissues and the variation in the culture media were determined. In water cultrue which was free of added nutrients, nitrogen was found to be largely in the form of nitrate(NO3-N). This NO3-N is believed to be the result of nitrification from NH4-N which was apparently released form the plants. From the studies of organ culture with root segments, the amount of nitrogen released and absorbed was found to be proportional to the amount added to the mediuim. Especially, in the N-plot, the amount of nitrogen absorbed by the tissue reached more than 90% of the amount supplied to the medium already in early stage. On the contrary, in the amount free plot, the amount of nitrogen released from the tissue was lower than the minimum level in the N-plot. The amount of total N and P in the cultured tissue was found to be influenced by the amount of nitrogen addedin the medium. However, the amount of K in the tissue was not related to the nitrogen level in the medium, but rather it was influenced by the amount of added potassium. These findings present little difference in the metabolic pattern among the three species plants studied, and suggest that the woody leguminous plants have some common features in tehir metabolic pattern.

  • PDF

Nitrogen Dissolution in CaO-SiO2-Al2O3-MgO-CaF2 Slags (CaO-SiO2-Al2O3-MgO-CaF2 슬래그의 질소용해도에 관한 연구)

  • Baek, Seoung Bae;Lim, Jong Ho;Jung, Woo Jin;Lee, Seoung Won
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The nitrogen solubility and nitride capacity of $CaO-SiO_2-Al_2O_3-MgO-CaF_2$ slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.