• Title/Summary/Keyword: nitrile butadiene rubber

Search Result 27, Processing Time 0.035 seconds

Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-nitrile Rubber

  • Shadrinov, N.V.;Kapitonov, E.A.;Sokolova, M.D.;Okhlopkova, A.A.;Shim, Ee Le;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2891-2894
    • /
    • 2014
  • The effects of mechanical activation of carbon black on the processing and properties of butadiene nitrile rubber were studied. Mechanical activation of carbon black caused an improvement in the physical and mechanical properties of the butadiene-nitrile rubber, BNR-18AMN. The optimum activation time that would afford rubber with improved properties was established.

Research on Capacitive Tactile Sensor for Electronic Skin using Natural Rubber and Nitrile Butadiene Rubber

  • Sangmin Ko;Dasom Park;Sangkyun Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • Recently, there has been a significant focus on the development of flexible and stretchable sensors, driven by advancements in electronic devices and the robotics industry. Among these sensors, tactile sensors stand out as the most actively researched, playing a crucial role in facilitating interaction between humans and electronic devices, particularly in robotics and medical applications. This study specifically involves the manufacturing of a capacitive tactile sensor using a relatively straightforward process and sensor structure. Natural rubber and Nitrile butadiene rubber, commonly employed in the rubber industry, were utilized. The dielectric material in the manufactured tactile sensor possesses a porous structure. Notably, the resulting tactile sensor demonstrated excellent sensitivity, approximately 1%/kPa, and exhibited the capability to detect pressures up to 212 kPa.

Experimental Investigation on the Non-linearity of Nitrile Butadiene Rubber (Nitrile Butadiene Rubber의 비선형성에 대한 실험적 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung;Do, Je-Sung;Kwon, Jong-Ho
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • Hydraulic actuators are used widely for industrial machinery. The seal made from elastomer is used as a core part of the actuator, NBR(nitrile butadiene rubber) materials with high quality of oil resistance and abrasion resistance is used widely, requiring excellent characteristic of sealing. According to applied circumstances, the actuators for industrial machinery are used under different temperature situations. In this study, three different kinds of NBR, which is Hs70, 80, 90 are determined as one of hydraulic materials. An experimental investigation is performed to confirm the non-linearity under different temperature ($-10^{\circ}C,\;20^{\circ}C,\;80^{\circ}C,\;100^{\circ}C$) situation, material constants for finite element analysis and plastic deformation in accordance with Load-unload.

Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under Operating Environment of Transformer

  • Qian, Yi-hua;Xiao, Hong-zhao;Nie, Ming-hao;Zhao, Yao-hong;Luo, Yun-bai;Gong, Shu-ling
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.918-927
    • /
    • 2018
  • Based on the actual operating environment of transformer, the aging tests of nitrile butadiene rubber (NBR) were conducted systematically under four conditions: in air, in transform oil, under compression in air and under compression in transform oil to studythe effect of high temperature, transform oil and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber and predict the lifetime. The effects of liquid media and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber were studied by using characterization methods such as IR spectrosc-opy, thermogravimetric measurements, Differential Scanning Calorimetry (DSC) measurements and mechanical property measurements. The changes in physical properties during the aging process were analyzed and compared. Different aging conditions yielded materials with different properties. Aging at $70^{\circ}C$ under compression stress in oil, the change in elongation at break was lower than that aging in oil, but larger than that aging under compression in air. The compression set or elongation at break as evaluation indexes, 50% as critical value, the lifetime of NBR at $25^{\circ}C$ was predicted and compared. When aging under compression in oil, the prediction lifetime was lower than in air and under compression in air, and in oil. It was clear that when predicting the service lifetime of NBR in oil sealing application, compression and media liquid should be involved simultaneously. Under compression in oil, compression set as the evaluation index, the prediction lifetime of NBR was shorter than that of elongation at break as the evaluation index. For the life prediction of NBR, we should take into account of the performance trends of NBR under actual operating conditions to select the appropriate evaluation index.

Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black Content (카본 함량에 따른 니트릴 부타디엔 고무의 음향 특성)

  • Jung Kyungil;Yoon Suk Wang;Cho Kuk Young;Park Jung-ki
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.377-380
    • /
    • 2002
  • Acoustic Characteristics of Nitrile Butadiene Rubber with Carbon Black ContentAcoustic and mechanical properties of Nitrile Butadiene Rubbers (NBR) with the variation of the carbon black content were investigated. NBR where the acrylonitrile content is $33\%$ based on the mole percent has been prepared with fixed sulfur content for vulcanization. Acoustic measurement of the prepared rubbers were peformed in the frequency region of $300\;\~\;1000\;kHz$. Their mechanical properties such as density, hardness were also measured. Increase of the carbon black content in the rubber resulted in enhancement of the mechanical property and linear increase of the sound speed as function of the carbon black content. Interestingly, attenuation of the sound speed was only affected by the existence of the carbon black and not by the amount of carbon black in the experiment range of this article. In this study, it was found that the amount of carbon black content in the NBR was correlated with the acoustic properties and can be estimated nondestructively by the measurement of the specific acoustic property.

  • PDF

Enhancement of Rubber Gasket Material for Pole Transformer (주상변압기 밀봉재질 개선을 위한 수명시험 방법)

  • Song, Dong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1770-1775
    • /
    • 2010
  • An acceleration life test for rubber gasket of pole transformer was performed. The Arrhenius method was applied as an accelerated degradation test. The failure mode was considered as an elongation, and the failure mechanism is counted as a heat. It is found that both the current material(NBR: Nitrile Butadiene Rubber) and recommended alternative material(HNBR: Hydrogenated Nitrile Butadiene Rubber) have the same Weibull distribution as a life characteristic. For life expectation 95% reliability level of characteristic life is used at using temperature. The test results for NBR and HNBR are 7.7 years and 28.0 years on $50^{\circ}C$ of using temperature, respectively.

Preparation and Properties of Printing Rubber Roller : (I) Oil Resistance and Mechanical Properties of Butabiene Rubber/Nitrile Rubber Compounds (인쇄용 고무roller의 제조와 물성: (I) 부타디엔고무와 니트릴고무 혼련물의 내유성 및 기계적 성질)

  • 박찬영
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.83-101
    • /
    • 2000
  • In this experiment butadiene rubber(BR)/acrylonitrile butadiene rubber(NBR) blends was prepared and then the applicability of BR/NBR blends as printing rubber roller was examined. With the aid of open 2-roll mill, BR, NBR and another chemical additives were compounded. Then rubber vulcanizates were manufactured by hot press and maximum torque, Mooney viscosity, mechanical properties and oil resistance of the test specimens were measured. With prolonged oil aged treating time, BR/NBR blends became soft and so the hardness of blends decreased. It could be explained by the swelling of rubber matrix with oil penetration in to rubber molecules. The undesirable low value of oil resistance of BR was significantly improved by blending BR with NBR.

  • PDF

Material Properties for Reliability Improvement in the FEA Results for Rubber Parts (고무 제품 유한요소해석 결과의 신뢰 향상을 위한 물성치 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1521-1528
    • /
    • 2011
  • We studied the material properties for reliability improvement in finite element analysis results for a nitrile butadiene rubber hub-bearing seal and for a carbon-filled rubber mount used in a vehicle. It was difficult to measure the material properties of hundreds of types of rubber for the mount design. Thus, we suggested that the engineering stressstrain relations from pure shear test data could be synthesized by using simple tension data and Poisson's ratio. We defined Poisson's ratio by using a function of principal stretches to synthesize the stress-strain relations for a pure shear test. A transformation of the pure shear data was applied to the experimental values to obtain the predicted results when the strain approaches 100%. In the finite element analysis for the contact force of a hub-bearing seal, the strain results that used the transformation of the pure shear data and simple tension data almost corresponded to the experimental values. Ogden constants were used to analyze.

Enhancement of Compatibility between Ultrahigh-Molecular-Weight Polyethylene Particles and Butadiene-Nitrile Rubber Matrix with Nanoscale Ceramic Particles and Characterization of Evolving Layer

  • Shadrinov, Nikolay V.;Sokolova, Marina D.;Okhlopkova, A.A.;Lee, Jungkeun;Jeong, Dae-Yong;Shim, Ee Le;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3762-3766
    • /
    • 2013
  • This article examines the modification of surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) with nanoscale ceramic particles to fabricate an improved composite with butadiene-nitrile rubber (BNR). Adhesion force data showed that ceramic zeolite particles on the surface of UHMWPE modulated the surface state of the polymer and increased its compatibility with BNR. Atomic force microscopy phase images showed that UHMWPE made up the microphase around the zeolite particles and formed the evolving layer with a complex interface. The complex interface resulted in improvements in the mechanical properties of the composite, especially its low-temperature resistance coefficients, thereby improving its performance in low-temperature applications.

Preparation and Properties of Polyketone/Rubber Blend to Improve Heat-resistance (내열성 향상을 위한 폴리케톤/탄성체 블렌드 제조 및 특성)

  • Yun, Ju-Ho;Yoon, Jeong-Hwan;Ha, Seong-Mun;Kim, Jong-Hwal
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Terpolymer polymerized carbon monoxide, ethylene and propylene as monomer, Polyketone is low-cost material compared with general engineering plastics such as polyamide, polyester, polycarbonate. Moreover, it is excellent in mechanical properties, chemical resistance, fuel permeability and abrasion resistance. So, it is attracted attention as the environmental friendly material to replace conventional engineering plastics. In this study, has been prepared Polyketone/Rubber (Ethylene propylene copolymer, Acrylonitrile butadiene rubber, Ethylene acrylic rubber) blends to improve heat resistance and investigated characteristic behavior after heat/oil aging.