• 제목/요약/키워드: nitrilase

검색결과 17건 처리시간 0.027초

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

Myxococcus stipitatus DSM 14675의 melithiazol 생합성 유전자 분석 (Analysis of the Melithiazol Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675)

  • 현혜숙;박수현;조경연
    • 한국미생물·생명공학회지
    • /
    • 제44권3호
    • /
    • pp.391-399
    • /
    • 2016
  • Melithiazol은 점액세균 Melitangium lichenicola, Archangium gephyra, Myxococcus stipitatus에 의해 생산되는 항진균 물질이다. M. lichenicola의 melithiazol 생합성 유전자는 이미 알려져 있지만, A. gephyra와 M. stipitatus의 melithiazol 생합성 유전자들은 아직까지 밝혀져 있지 않다. 본 연구에서는 유전체 서열 분석과 돌연변이 분석을 통해 M. stipitatus DSM 14675 균주로부터 37.3 kb 크기의 melithiazol 생합성 유전자군을 발견하였다. 이 유전자군은 9개(MYSTI_04973−MYSTI_04965)의 유전자로 구성되어 있는데, 4개의 polyketide synthase 모듈과 3개의 non-ribosomal peptide synthase 모듈, 그리고 fumarylacetoacetate hydrolase, S-adenosylmethionine-dependent methyltransferase, nitrilase를 암호화하는 것으로 분석되었다. 플라스미드 삽입 돌연변이를 통해 MYSTI_04972 유전자 또는 MYSTI_04973를 불활성화시켰을 때 melithiazol 생산능이 상실되었다. MYSTI_04972부터 MYSTI_04965까지의 8개 유전자가 암호화하는 melithiazol 생합성 모듈의 구성은 M. lichenicola Me l46에서와 유사하였다. 하지만 첫 번째 유전자(MYSTI_04973)에 의해 암호화되는 로딩 모듈의 구성은 M. lichenicola Me l46과 달랐는데, 이러한 차이는 M. stipitatus 균주들이 어떻게 M. lichenicola Me l46과는 다른 구조의 melithiazol 유도체들을 생산하는지 설명해준다.

Recombinant Cyanide Hydratases에 의한 시안화물 분해 (Cyanide Degradation by Two Recombinant Cyanide Hydratases)

  • 권성현;조대철
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1287-1291
    • /
    • 2009
  • 시안화물을 포름아미드로 변환시키는 nitrilase의 일종인 시안 수화효소 (cyanide hydratase, CHT) 를 진균류인 Neurospora crassa 와 Aspergillus nidulans로부터 유전자 조작을 통하여 His에 태그 또는 언태그된 형태로 대장균에 형질변환시켜 발현하였다. 발현된 효소를 고정 metal affinity chromatography로 정제하였다. 정제된 효소들의 pH 안정성, 동력학적 매개변수의 값을 검토하였다. 실험 결과 N. crassa 의 CHT가 50% 정도 더 넓은 pH 안정 범위를 가졌고 3배 가량 turnover rate도 높았다. 반면 A. nidulans CHT의 Km 값 (효소포화 용량)이 N. crassa CHT보다 더 크게 나타났다. 두 진균류에서 CHT의 유도발현은 질소성분과 상관없이 KCN에 의해 가능하였으며, 생분해 실험결과 N. crassa CHT에 의해 최대 82%/h의 시안분해가 가능하였다.

니트릴 분해효소 생산균인 Rhodococcus erythropolis의 발굴 및 효소 특성 연구 (Characterization of Nitrile-hydrolyzing Enzymes Produced from Rhodococcus erythropolis)

  • 박효정;박하주;엄기남;김형권
    • 한국미생물·생명공학회지
    • /
    • 제34권3호
    • /
    • pp.204-210
    • /
    • 2006
  • 각종 니트릴 화합물은 키랄 의약품의 합성에 사용되는 유용한 중간체이다. 본 연구에서는 토양 분리균 중에서 4-chloro-3-hydroxy butyronitrile(CHBN)기질로부터 고지혈증 치료제인 Atorvastatin을 합성하는 데에 필요한 4-chloro-3-hydroxy butyric acid(CHBAc)를 생성하는 균주 2종류를 선발하였다. 16S rRNA 분석을 통해서 균 동정을 수행한 결과, 모두 Rhodococcus erythropolis에 속하는 것으로 밝혀졌으며, TLC 분석 결과로부터 CHBN 기질을 분해하는 효소는 니트릴 히드라타아제(NHase)와 아미다아제(amidase)인 것으로 추정되었다. 분리균의 CHBN 분해효소는 ${\varepsilon}$-카프로락탐에 의해서 발현이 유도되었으며, 균체와 세포 추출액에서 모두 기질 분해활성을 나타났다. 기존에 보고된 효소의 유전자 염기서열로부터 프리머를 제조하고 PCR을 수행함으로써 분리균으로부터 니트릴 히드라타아제와 아미다아제 유전자를 확보하게 되었다. 발굴된 유전자의 염기서열을 분석한 결과, 이미 보고된 Rhodococcus erythropolis의 니트릴 히드라타아제 ${\alpha}$-서브유니트과 ${\beta}$-서브유니트 및 아미다아제와 96% 이상의 상동성을 보였다. 따라서 CHBN기질은 분리균의 니트릴 히드라타아제와 아미다아제 효소에 의해서 아미(CHBAm)를 거쳐 산(CHBAc)으로 전환되는 것을 알게 되었다.

옥수수 (Zea mays) 뿌리의 알데히드 산화효소와 생장에 미치는 텅스텐산 나트륨의 영향 (The Effect of Sodium Tungstate on the Aldehyde Oxidase and the Growth in the Primary Root of Maize (Zea mays))

  • 오영주;조영준;박웅준
    • 생명과학회지
    • /
    • 제17권7호통권87호
    • /
    • pp.990-995
    • /
    • 2007
  • 몰리브덴 보조인자 형성을 방해하는 텅스텐산 나트륨이 옥수수 뿌리에서 알데히드 산화효소의 활성과 생장에 미치는 영향을 조사하였다. 다른 식물에서 보고된 바와 같이 옥수수 뿌리에서도 텅스텐산 나트륨은 그 농도가 증가됨에 따라 알데히드 산화효소의 활성을 억제하였는데, 억제 활성은 식물체에 직접 처리한 경우에만 나타나고 추출된 효소에 처리하였을 때에는 효과가 없었다. 텅스텐산은 알데히드 산화효소의 활성화를 억제하는 물질임에도 불구하고, Western분석에 의하면 알데히드 산화효소 단백질의 함량을 감소시키는 것으로 나타나 반응산물이 효소함량을 증가시키는 양성 되먹임 조절관계를 나타내었다. 텅스텐산 나트륨은 효소활성을 억제하는 농도에서 옥수수 원뿌리의 생장과 곁뿌리발생을 억제하였지만 굴중성 반응에는 영향이 없었다. 전자의 두 반응은 옥신 절대함량에 의존하고 후자는 상대량에 의존하므로 텅스텐산 나트륨에 의한 옥신 함량 변화로 관찰된 결과들의 설명이 가능할 것으로 사료되었다. 그러나 뿌리의free IAA의 함량 변화는 검출되지 않았다. 옥신 함량 조절에는 강력한 항상성 기작이 관여하므로 IAA conjugate분해와 nitrilase에 의한 생합성 증가 등 결과 설명에 적용 가능한 내용들을 논의하였다.