• Title/Summary/Keyword: nitride layer

Search Result 441, Processing Time 0.028 seconds

Nano-floating gate memory using size-controlled Si nanocrystal embedded silicon nitride trap layer

  • Park, Gun-Ho;Heo, Cheol;Seong, Geon-Yong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.148-148
    • /
    • 2010
  • 플래시 메모리로 대표되는 비휘발성 메모리는 IT 기술의 발달에 힘입어 급격한 성장세를 나타내고 있지만, 메모리 소자의 크기가 작아짐에 따라서 그 물리적 한계에 이르러 차세대 메모리에 대한 요구가 점차 높아지고 있는 실정이다. 따라서, 이러한 문제점에 대한 대안으로서 고속 동작 및 정보의 저장 시간을 향상 시킬 수 있는 nano-floating gate memory (NFGM)가 제안되었다. Nano-floating gate에서 사용되는 nanocrystal (NCs) 중에서 Si nanocrystal은 비휘발성 메모리뿐만 아니라 발광 소자 및 태양 전지 등의 매우 다양한 분야에 광범위하게 응용되고 있지만, NCs의 크기와 밀도를 제어하는 것이 가장 중요한 문제로 이를 해결하기 위해서 많은 연구가 진행되고 있다. 또한, 소자의 소형화가 이루어지면서 기존의 플래시 메모리 한계를 극복하기 위해서 터널베리어에 관한 관심이 크게 증가했다. 특히, 최근에 많은 주목을 받고 있는 개량형 터널베리어는 크게 VARIOT (VARIable Oxide Thickness) barrier와 CRESTED barrier의 두 가지 종류가 제안되어 있다. VARIOT의 경우에는 매우 얇은 두께의low-k/high-k/low-k 의 적층구조를 가지며, CRESTED barrier의 경우에는 반대의 적층구조를 가진다. 이와 같은 개량형 터널 베리어는 전계에 대한 터널링 전류의 감도를 증가시켜서 쓰기/지우기 특성을 향상시키며, 물리적인 절연막 두께의 증가로 인해 데이터 보존 시간의 향상을 달성할 수 있다. 본 연구에서는 박막의 $SiO_2$$Si_3N_4$를 적층한 VARIOT 타입의 개량형 터널 절연막 위에 전하 축적층으로 $SiN_x$층의 내부에 Si-NCs를 갖는 비휘발성 메모리 소자를 제작하였다. Si-NCs를 갖지 않는 $SiN_x$전하 축적층은 Si-NCs를 갖는 전하 축적층보다 더 작은 메모리 윈도우와 열화된 데이터 보존 특성을 나타내었다. 또한, Si-NCs의 크기가 감소됨에 따라 양자 구속 효과가 증가되어 느린 지우기 속도를 보였으나, 데이터 보존 특성이 크게 향상됨을 알 수 있었다. 그러므로, NFGM의 빠른 쓰기/지우기 속도와 데이터 보존 특성을 동시에 만족하기 위해서는 Si-NCs의 크기 조절이 매우 중요하며, NCs크기의 최적화를 통하여 고집적/고성능의 차세대 비휘발성 메모리에 적용될 수 있을 것이라 판단된다.

  • PDF

Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition (유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동)

  • Jung, Woo-Gwang;Jang, Jae-Min;Choi, Seung-Kyu;Kim, Jin-Yeol
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.535-541
    • /
    • 2008
  • Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).

Trap characteristics of charge trap type NVSM with reoxidized nitrided oxide gate dielectrics (재산화 질화산화 게이트 유전막을 갖는 전하트랩형 비휘발성 기억소자의 트랩특성)

  • 홍순혁;서광열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.304-310
    • /
    • 2002
  • Novel charge trap type memory devices with reoxidized oxynitride gate dielectrics made by NO annealing and reoxidation process of initial oxide on substrate have been fabricated using 0.35 $\mu \textrm{m}$ retrograde twin well CMOS process. The feasibility for application as NVSM memory device and characteristics of traps have been investigated. For the fabrication of gate dielectric, initial oxide layer was grown by wet oxidation at $800^{\circ}C$ and it was reoxidized by wet oxidation at $800^{\circ}C$ after NO annealing to form the nitride layer for charge trap region for 30 minutes at $850^{\circ}C$. The programming conditions are possible in 11 V, 500 $\mu \textrm{s}$ for program and -13 V, 1ms for erase operation. The maximum memory window is 2.28 V. The retention is over 20 years in program state and about 28 hours in erase state, and the endurance is over $3 \times 10^3$P/E cycles. The lateral distributions of interface trap density and memory trap density have been determined by the single junction charge pumping technique. The maximum interface trap density and memory trap density are $4.5 \times 10^{10} \textrm{cm}^2$ and $3.7\times 10^{18}/\textrm{cm}^3$ respectively. After $10^3$ P/E cycles, interlace trap density increases to $2.3\times 10^{12} \textrm{cm}^2$ but memory charges decreases.

The growth of GaN on the metallic compound graphite substrate by HVPE (HVPE 방법에 의한 금속 화합물 탄소체 기판 위의 GaN 성장)

  • Kim, Ji Young;Lee, Gang Seok;Park, Min Ah;Shin, Min Jeong;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Lee, Hyo Suk;Kang, Hee Shin;Jeon, Hun Soo;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.213-217
    • /
    • 2013
  • The GaN layer was typical III-V nitride semiconductor and was grown on the sapphire substrate which cheap and convenient. However, sapphire substrate is non-conductivity, low thermal conductivity and has large lattice mismatch with the GaN layer. In this paper, the poly GaN epilayer was grown by HVPE on the metallic compound graphite substrate with good heat dissipation, high thermal and electrical conductivity. We tried to observe the growth mechanism of the GaN epilayer grown on the amorphous metallic compound graphite substrate. The HCl and $NH_3$ gas were flowed to grow the GaN epilayer. The temperature of source zone and growth zone in the HVPE system was set at $850^{\circ}C$ and $1090^{\circ}C$, respectively. The GaN epilayer grown on the metallic compound graphite substrate was observed by SEM, EDS, XRD measurement.

Mechanical Property Evaluation of Dielectric Thin Films for Flexible Displays using Organic Nano-Support-Layer (유기 나노 보강층을 활용한 유연 디스플레이용 절연막의 기계적 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Yang, Chanhee;Song, Myoung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, rollable and foldable displays are attracting great attention in the flexible display market due to their excellent form factor. To predict and prevent the mechanical failure of the display panels, it is essential to accurately understand the mechanical properties of brittle SiNx thin films, which have been used as an insulating film in flexible displays. In this study, tensile properties of the ~130 nm- and ~320 nm-thick SiNx thin films were successfully measured by coating a ~190 nm-thick organic nano-support-layer (PMMA, PS, P3HT) on the fragile SiNx thin films and stretching the films as a bilayer state. Young's modulus values of the ~130 nm and ~320 nm SiNx thin films fabricated through the controlled chamber pressure and deposition power (A: 1250 mTorr, 450 W/B: 1000 mTorr, 600 W/C: 750 mTorr, 700 W) were calculated as A: 76.6±3.5, B: 85.8±4.6, C: 117.4±6.5 GPa and A: 100.1±12.9, B: 117.9±9.7, C: 159.6 GPa, respectively. As a result, Young's modulus of ~320 nm SiNx thin films fabricated through the same deposition condition increased compared to the ~130 nm SiNx thin films. The tensile testing method using the organic nano-support-layer was effective in the precise measurement of the mechanical properties of the brittle thin films. The method developed in this study can contribute to the robust design of the rollable and foldable displays by enabling quantitative measurement of mechanical properties of fragile thin films for flexible displays.

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF

Effect of Stuffing of TiN on the Diffusion Barrier Property (II) : Cu/TiN/Si Structure (TiN의 충진처리가 확산방지막 특성에 미치는 영향(II) : Cu/TiN/Si 구조)

  • Park, Gi-Cheol;Kim, Gi-Beom
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.169-177
    • /
    • 1995
  • The diffusion barrier property of 100-nm-thick titanium nitride (TiN) film between Cu and Si was investigated using sheet resistance measurements, etch-pit observation, x-ray diffractometry, Auger electron spectroscopy, and transmission electron microscopy. The TiN barrier fails due to the formation of crystalline defects (dislocations) and precipitates (presumably Cu-silicides) in the Si substrate which result from the predominant in-diffusion of Cu through the TiN layer. In contrast with the case of Al, it is identified that the TiN barrier fails only the in-diffusion of Cu because there is no indication of Si pits in the Si substrate. In addition, it appears that the stuffing of TiN does not improve the diffusion barrier property in the Cu/TiN/Si structure. This indicates that in the case of Al, the chemical effect that impedes the diffusion of Al by the reaction of Al with $TiO_{2}$ which is present in the grain boundaries of TIN is very improtant. On the while, in the case of Cu, there is no chemical effect because Cu oxides, such as $Cu_{2}O$ or CuO, is thermodynamically unstable in comparison with $TiO_{2}$. For this reason, it is considered that the effect of stuffing of TiN on the diffusion barrier property is not significant in the Cu/ TiN/Si structure.

  • PDF

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

The Effects of Electrode Materials on the Electrical Properties of $Ta_2O_5$ Thin Film for DRAM Capacitor (DRAM 커패시터용 $Ta_2O_5$ 박막의 전기적 특성에 미치는 전극의존성)

  • Kim, Yeong-Wook;Gwon, Gi-Won;Ha, Jeong-Min;Kang, Chang-Seog;Seon, Yong-Bin;Kim, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.229-235
    • /
    • 1991
  • A new electrode material for $Ta_2O_5$ capacitor was developed to obtain both high dielectric constant and improved electrical properties for use in DRAM. High leakage current and low breakdown field of as-deposited $Ta_2O_5$ film on Si is due to the reduction of $Ta_2O_5$ by silicon at $Ta_2O_5$/electrode interface. $Dry-O_2$ anneal improves the electrical properties of $Ta_2O_5$ capacitor with Si electrode, but it thickens the interfacial oxide and lowers the dielectric constant, subsequently. $Ta_2O_5$ capacitor with TiN exectrode shows better electrical properties and higher dielectric constant than post heat treated $Ta_2O_5$ film on Si. No interfacial oxide layer at $Ta_2O_5$/TiN interface suggests that there\`s no Interaction between $Ta_2O_5$ and electrode. TiN is a adequate electrode material for $Ta_2O_5$ capacitor.

  • PDF