• 제목/요약/키워드: nitridation

검색결과 193건 처리시간 0.024초

금속알루미늄으로부터 질화알루미늄의 합성 (Synthesis of Aluminum Nitride from Metal Aluminum Powders)

  • 최상욱;이승제
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 1985
  • Aluminum nitride (AlN) was synthesized from aluminum (Al) powders as a starting material in the tempe-rature range of 450~1, 15$0^{\circ}C$ in the presence of 90% $N_2$-10%$H_2$ gases. The thermogravimentric analysis showed that the nitridation of Al powders started at about 43$0^{\circ}C$ and escalated greatly from 53$0^{\circ}C$. The scanning electron microcopic observation revealed that AlN crystals were different in shape with varying temperature of nitridation. The crystals of AlN which were formed in the lower temperature than the melting point of Al were spherical while those of AlN in the higher temperature were fibrous. The yield of AlN was determined quantitatively by both XRD method and weight gain between before and after the nitridation of Al compacts. It was considered that the former was available for the specimen which was made in the high nitriding temperature. But the latter was unavilable for the same one probably because of the volatile loss of Al in the higher temperature.

  • PDF

Decoupled Plasma Nitridation 공정 적용을 통한 Negative Bias Temperature Instability 특성 개선 (Improvement of Negative Bias Temperature Instability by Decoupled Plasma Nitridation Process)

  • 박호우;노용한
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.883-890
    • /
    • 2005
  • In this paper, the established model of NBTI (Negative Bias Temperature Instability) mechanism was reviewed. Based on this mechanism, then, the influence of nitrogen was discussed among other processes. A constant concentration of nitrogen exists inside $SiO_2$ in order to prevent boron from diffusing and to increase dielectric constant. It was shown that NBTI improvement was achieved by controlling nitrogen profile. It was supposed that the existence of low activation energy of Si-N bonds at $Si-SiO_2$ interface attributes the improvement by making hydrogen prevent interface traps. It was also shown that improvement of NBTI can be achieved by more effective control of nitrogen profile. It was supposed that the maximum control of nitrogen profile can be achieved by DPN (Decoupled Plasma Nitridation) process.

반응결합 질화규소의 제조의 있어서 초기 질소분압의 영향 (The Effect of Initial Partial Pressure of Nitrogen on the Manufacturing of Reaction-Bonded Silicon Nitride)

  • 이근예;이준근;오재희
    • 한국세라믹학회지
    • /
    • 제21권1호
    • /
    • pp.51-59
    • /
    • 1984
  • In this paper mechanical properties of reaction-bonded silicon nitride are studied with the variation of initial nitrogen partial pressure. At 1, 25$0^{\circ}C$ the amount of nitridation and the nucleation of nitride increase linearly with the nitrogen partial pressure increase. After the nitridation is completed the density of nitride and modulus of rupture at room temperature are increased with the amount of nitridation. When the partial pressure of nitrogen is 0.5 atm the specimen show the optimum properties that is the highest density of nitride and modulus of rupture. Also the microstructure of $\alpha$-matte is deveoped very well at that pressure of nitrogen which contributes to the strength development of specimen. It is shown that with proper control of initial partial pressure of nitrogen high strength silicon nitride body can be manufactured for dynamic applications.

  • PDF

자기기록용 $Fe_4N$ 분말의 합성 및 자기특성 (Synthesis of $Fe_4N$ Powder and Its Magnetic Properties for Magnetic Recording)

  • 변태봉;오재희
    • 한국세라믹학회지
    • /
    • 제28권2호
    • /
    • pp.93-100
    • /
    • 1991
  • For determination the optimum manufacturing condition Fe4N powder for magnetic recording media, we have studied the following important conditions : the effect of particle size of metal powder on the nitridation, the condition of nitridation on the formation and magnetic properties of Fe4N, and stability of Fe4N powder against temperature and change on standing. The results can be summarized as : 1) Single phase Fe4N is formed at 50v/o of ammonia concentration during the nitridation reaction, 2) Single phase Fe4N is formed above 40$0^{\circ}C$, 15min regardless of the metal powder sizes, 3) Coercivity and saturation magnetization of Fe4N powder almost constant value until 20 day-passing from preparation date.

  • PDF

AlN 분말합성에 있어서 LiF와 BaF$_2$ 첨가효과 (Effect of LiF and BaF2 Addition on Synthesis of AlN Powder)

  • 최병현;이창송;신태수;이종민
    • 한국세라믹학회지
    • /
    • 제28권8호
    • /
    • pp.647-653
    • /
    • 1991
  • In order to synthesize fine AlN powder by the direct nitridation of Aluminum metal power added LiF and BaF2 as additives was heated at 150$0^{\circ}C$ for 3 hrs. in nitrogen gas with flow rate of 20 mι/sec. Additives are promoted the nitridation by prevented the aggromerate of powders when 3% LiF and 2% BaF2 were added to Al metal powder. Rate of nitridation was about 100% and average size of AlN powders were very fine such as 0.3 ${\mu}{\textrm}{m}$. Specific surface area of synthesized AlN powder was 3.95$m^2$/g and also O2 and N2 contents were 2.595% and 33.25%, respectively.

  • PDF

Mo-Al 복합 산화물의 질화반응 처리된 촉매상에서 암모니아 촉매 분해반응 (Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide)

  • 백서현;윤경희;신채호
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.159-168
    • /
    • 2022
  • MoO3 비율을 10-50 중량비로 변화하여 제조한 Mo-Al 복합 산화물 상에서 소성 후 승온 질화반응을 통하여 얻은 Mo-Al 질화물 상에서 암모니아 분해반응에서의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), X-선 광전자분석법(XPS), 수소 승온환원(H2-TPR), 투과전자현미경(TEM) 분석을 수행하였다. 600 ℃에서 소성 후 Mo-Al 복합산화물은 γ-Al2O3와 Al2(MoO4)3 결정상을 나타냈으며 질화반응 후의 질화물은 비정형 형태를 보여주었다. 질화반응 후의 비표면적은 MoO3의 위상전환반응에 의해 Mo 질화물 형성으로 인해 증가하였으며, Mo 질화물이 γ-Al2O3에 담지된 형태를 보여주었다. 암모니아 분해반응에서의 촉매 활성은 40 wt% MoO3가 가장 좋은 활성을 보여주었고, 질화반응 시간이 증가함에 따라 활성이 증가하였으며 이에 따라 활성화에너지 감소 효과를 나타냈다.

The Effect of Quartz Liner in Rapid Thermal Nitridation Process for Chamber Contamination Control

  • 윤진혁;박세근;이영호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.195-195
    • /
    • 2015
  • 반도체 제조 시 ohmic contact을 형성하고, barrier metal layer형성을 위해 NH3 기체를 사용하는 rapid thermal nitridation (RTN)은 반도체 공정에 있어 매우 중요한 핵심 기술이다. 그러나 공정 진행 시 발생하는 공정 부산물에 의한 chamber오염으로 인해 매우 정확히 입사 되어야 할 thermal energy의 controllability가 저하되고 있어, 미세 공정능력 구현의 한계에 부닥치고 있다. 본 연구에서는 quartz plate liner를 적용하여 RTN 공정에서 발생하는 공정 부산물인 ammonium chloride (NH4Cl)의 chamber 표면 증착을 최소화하였고, 공정 진행 온도의 controllability를 확보하였다.

  • PDF

자전 고온 합성법에 의한 질화 알루미늄 휘스커의 제조 (Fabrication of AlN Whiskes by Self-propagating High-temperature Synthesis)

  • 이경재;장영섭;김석윤;김용석
    • 한국세라믹학회지
    • /
    • 제32권8호
    • /
    • pp.931-937
    • /
    • 1995
  • AlN powder and whiskers were synthesized by direct nitridation of aluminum powder in pure nitrogen atmosphere. The nitridation reaction of aluminum powder was initiated by heating the sample to the ignition temperature and the reaction was finished in less than 3 minutes. AlN whisker-shaped morphology was observed predominantly when the sample was heated above 90$0^{\circ}C$.

  • PDF

Surface Nitridation of Nano-sized Anatase TiO2 using Urea and Thiourea for Enhanced Electrochemical Performance in Lithium-ion Batteries

  • Wonyoung Song;Oh B. Chae;Ji Heon Ryu
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.512-520
    • /
    • 2024
  • Given the critical importance of safety in lithium-ion batteries (LIBs), titanium dioxide (TiO2) is widely regarded as a reliable material for the negative electrode. Anatase TiO2 is a safe negative electrode material in LIBs, attributed to its high redox potential (1.5-1.8 V vs. Li/Li+), which exceeds that of commercially available graphite, alleviating the risk of lithium plating. In addition, TiO2 has gained considerable attention as a cost-effective negative electrode material for LIBs, owing to its versatility in nano-sized forms. The use of nano-sized TiO2 as an electrode-active material reduces the diffusion distance of Li+ ions. However, TiO2 is adversely affected by its inherently low electronic conductivity, which hinders its rate performance. Herein, we investigated the surface treatment of commercially available TiO2 nanoparticles with anatase structure using a heat-treatment process in the presence of urea or thiourea. Our objective was to leverage the eco-friendly nitridation of TiO2 from the thermal decomposition of urea or thiourea, enhancing their electrochemical performance in lithium-ion batteries while minimizing environmental impact. Specifically, we employed an autogenic reactor (AGR) in a closed space to ensure an adequate reaction between NH3 and TiO2, preventing NH3 from escaping into the external environment, as observed in open systems. Consequently, surface nitridation enhanced the overall electrochemical performance, including the rate capability, capacity retention, and initial Coulombic efficiency (ICE). Notably, a remarkable enhancement was observed for the thiourea-treated TiO2. Compared to the pristine TiO2, the thiourea-treated TiO2 demonstrated a nearly threefold increase in capacity at 1.0 C and a nearly two-fold increase in capacity retention.