• Title/Summary/Keyword: nitric oxide synthase activity

Search Result 670, Processing Time 0.026 seconds

Changes in the Cellular cGMP Levels and Guanylate Cyclase Activities during Chick Myoblast Fusion (근원세포 융합시 Cellular cGMP 수준과 Guanylate cyclase 활성의 변화)

  • 백미영;강만식
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.433-438
    • /
    • 1993
  • In the previous paper (Choi et al., 1992), we found that a large but transient elevation in intracellular cGMP levels occur concomitant with the myoblast fusion. To establish the physiological significance of the elevation of cGMP levels, the change in guanylate cyclase activity dudng myoblast fusion and the correlation hetween various chemicals that may affect guanylate cyclase adivity and myoblast fusion were examined. Sodium nitroprusside, a nitric oxide-forming compound, induced a precocious fusion and increased guanylate cyclase activity compared to the control. Furthermore, L-NG-monomethyl arginine, specific inhibitor of L-arginine: nitric oxide synthase, inhibited the cell fusion in a dose-dependent manner, without affecting biochemical differentiation. On the basis of our present findings, we propose that the onset of myoblast fusion is somehow correlated with the rise in cellular cGMP levels that is regulated by the activation or inhibItIon of soluble guanylate cyclase, via as yet undefined mechanism but possibly through L-arginine: nitric oxide pathway.

  • PDF

Inhibitory Activity of Medicinal Herbs on Nitric Oxide Synthesis in Activated Macrophages

  • Lee, Hwa-Jin;Kim, Ji-Sun;Jin, Chang-Bae;Ryu, Jae-Ha
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS: cNOS and iNOS). The NO produced in large amounts by the iNOS is known to be responsible for the vasodilation and hypotension observed in septic shock, cancer metastasis and inflammation. The inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. We prepared alcoholic extracts of herbal drugs which have been used for the treatment of inflammation in oriental medicine. We have screened the inhibitory activity of NO production in lipopolysaccharide (LPS)-activated macrophages after the treatment of these extracts. Among 82 kinds of extracts of herbal drugs, 35 extracts showed the potent inhibitory activity of NO production above 50% at the concentration of $50\;{\mu}g/mL$. The inhibitory activities of NO production were also evaluated for several solvent fractions at two different concentrations. Especially, hexane and EtOAc fractions of Alpinia officinarum, Angelica gigas, Ostericum koreanum, Saussurea lappa, Torilis japonica, and hexane fractions of Agrimonia pilosa, Machilus thunbergii, Hydrangea serrata, Magnolia obovata, Prunella vulgaris, Tussilago farfara, and EtOAC fractions of Perilla frutescence showed a significant activity at 10 and/or $25\;{\mu}g/mL$. In Western blot analysis, the hexane fractions ($5\;{\mu}g/mL$) of Magnolia obovata and Saussurea lappa, and EtOAc fractions ($20\;{\mu}g/mL$) of Hydrangea Serrata, Perilla frutescence and Torilis japonica inhibited the expression of iNOS protein in LPS-activated macrophages. These plants may be promising candidates for the study of the activity-guided purification of active compounds and might be useful for the treatment of inflammatory diseases and endotoxemia accompanying overproduction of NO.

Diesel Exhaust Particles and Airway Inflammation: Effect of Nitric Oxide Synthase Inhibitors

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.121-128
    • /
    • 2002
  • This study was carried out to investigate if nitric oxide synthase (NOS) inhibitors modulate airway inflammation induced by diesel exhaust particles (DEP). N$\^$G/-nitro-L-arginine methyl ester (L-NAME), a potent constitutive NOS (cNOS) inhibitor, and aminoguanidine (AG), a selective inducible NOS (iNOS) inhibitor, were administered to mice in their drinking water for 7 weeks. Airway inflammation was elicited by the repeated intratracheal administration of DEP. The results showed that macrophages, inflammatory eosinophils and neutrophils in bronchoalveolar lavage (BAL) fluids by intratracheal DEP instillation were significantly suppressed in the mice treated with two NOS inhibitors toghther with DEP. The suppression of these cells was more effective in AG treated groups than in L -NAME treated groups. NOS inhibitor treatment also reduced interleukin -5 (IL-5 in the BAL fluids and lung homogenates. Additionally, it was found that eosinophil peroxidase (EPO) activity in the BAL fluids was also decreased by NOS inhibitor treatment. These results suggest that nitric oxide (NO) is produced in airway inflammation by repeated DEP instillation, and that iNOS inhibition as well as cNOS inhibition can play a modulating role in this airway inflammation by DEP.

Effects of Naturally Occurring Flavonoids on Inflammatory Responses and Their Action Mechanisms

  • Kim, Hyun-Pyo;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.6 no.4
    • /
    • pp.170-178
    • /
    • 2000
  • Flavonoids are natural polyphenolic compounds widely distributed in plant kingdom. Although many flavonoids were found to show anti-inflammatory activity in vitro and in vivo, the potency of anti-inflammatory activity was not enough for a clinical trial. Thus, a search for finding potential flavonoid molecules is continuing. In this review, in vivo anti-inflammatory activity of various flavonoid derivatives is summarized mainly based on the results obtained in authors' laboratories. Among them, several biflavonoids such as amentoflavone and ginkgetin were found to possess anti-inflammatory activity on animal models of acute/chronic inflammation comparable to nonsteroidal and steroidal anti-inflammatory drugs currently used. In respect of their action mechanisms, the effects on arachidonic acid metabolism and nitric oxide production were described. Some flavonoids directly inhibit cyclooxygenase and/or lipoxygenase. Biflavones such as ochnaflavone and ginkgetin are inhibitors of phospholipase $A_2$. In recent studies, certain flavonoids were also found to suppress cyclooxygenase-2 and inducible nitric oxide synthase expression induced by inflammatory stimuli. Therefore, it is suggested that anti-inflammatory activity of the certain flavonoids (mainly flavones, flavonols and biflavonoids) may be mediated by direct inhibition of arachidonic acid metabolizing enzymes as well as suppression of the enzyme expression involved in inflammatory responses.

  • PDF

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

In-vitro Anti-inflammatory Activity of Rubus coreanus Miq. on Nitric Oxide, $Interferon-\gamma$, Cycloxygenase-2, and Tumor Necrosis $Factor-\alpha$ Production in the Macrophage like Cell Line RAW 264.7 Activated by Lipopolysccharide

  • Choi, Se-Young;Lee, Kyou-Chae;Jeoung, Young-Jun;Lim, Beong-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.324-328
    • /
    • 2007
  • To search for immunoactive natural products exerting anti-inflammatory activity, we have evaluated the effects of the ethanol extracts of Rubus coreanus Miq. (ERC) on lipopolysaccharide-induced nitric oxide (NO), tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$, and $Interferon-{\gamma}\;(IFN-{\gamma})$ production by RAW 264.7 macrophage cell line. Our data indicate that this extract is a potent inhibitor of NO production and it also significantly decreased $IFN-{\gamma}\;and\;TNF-{\alpha}$ production. Consistent with these results, the protein level of inducible Nitric Oxide Synthase (iNOS) and cyclooxygenase-2 (COX-2) was inhibited by ethanol extracts of ERC in a dose-dependent manner. These results suggest that ERC may exert anti-inflammatory and analgesic effects possibly by suppressing the inducible NO synthase and COX-2 expressions.

Isolation and Characterization of a New Alkaloid from the Seed of Prunus persica L. and Its Anti-inflammatory Activity

  • Rho, Jung-Rae;Jun, Chang-Soo;Ha, Young-Ae;Yoo, Myung-Ja;Cui, Ming-Xun;Baek, Hwa-Seung;Lim, Jin-A;Lee, Young-Haeng;Chai, Kyu-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1289-1293
    • /
    • 2007
  • Persicaside has been isolated as a new alkaloid natural compound from a methanol (EtOA)-soluble extract of Prunus persica seed. It was purified by a combination of chromatographic techniques and recrystallization. The structure of Persicaside was determined by extensive NMR experiments and mass ppectroscopic data. It inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production via suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2 expression in rat osteoblast sarcoma cells (ROS 17/2.8) in concentration-dependent manner whereas it spares the COX-1 enzyme activity.

Ginsenoside $R_e$ Increases Fertile and Asthenozoospermic Infertile Human Sperm Motility by Induction of Nitric Oxide Synthase

  • Zhang Hong;Zhou Qing-Ming;Li Xiao-Da;Xie Yi;Duan Xin;Min Feng-Ling;Liu Bing;Yuan Zhi-Gang
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • We investigated the effects of Ginsenoside $R_e$ on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or $100\;{\mu}M$ of Ginsenoside $R_e$. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the $^{3}H$-arginine to $^{3}H$-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside $R_e$ significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside $R_e$. And pretreatment with a NOS inhibitor $N^{w}$-Nitro-L-arginine methyl ester (L-NAME, $100\;{\mu}M$) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside $R_e$. Data suggested that Ginsenoside $R_e$ is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.

YH439, a Hepatoprotective Agent, Suppresses Cytokines and Nitric Oxide Production in LPS-primed Rats Administered with $CCL_4$ ($CCI_4$와 Lipopolysaccharide로 유도한 흰쥐 간 독성에 대한 YH439의 방어작용 : cytokines 및 nitric oxide 생성의 억제)

  • 김연숙;이종욱;김낙두
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.198-207
    • /
    • 1999
  • The aim of the present investigation was to examine whether YH439, a hepatoprotective agent, exerts protective effect against hepatotoxicity and reduces the production of cytokines and NO in lipopolysaccharide (LPS)-primed rats with carbon tetrachloride ($CCl_4$). Administration of LPS following a single dose of CCl4 injection resulted in remarkable elevations of the serum $TNF{\alpha},{\;}IL-l{\beta$ and IL-6 level. The serum NO level was moderately elevated and severe liver damage was evidenced by increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities. YH439 decreased the levels of TNF, $IL-l{\beta}$, IL-6, ALT, SDH as well as NO in the serum elevated by CCl4+LPS in a dose-dependent manner. Inducible nitric oxide synthase (iNOS) level was decreased in the liver of rats treated with YH439. The increased iNOS activity induced by LPS and $interferon-{\gamma}$ was significantly decreased in RAW 264.7 cells by YH439 treatment. YH439 increased the GSH level decreased by $CCl_4+LPS$ and suppressed the ratio of GSSG/GSH. The reduction of hepatotoxicity by YH439 may associated with the decrease in the production of cytokines as well as suppression of iNOS protein in conjunction with an increase in the GSH level.

  • PDF

Inhibition of Contact Dermatitis in Animal Models and Suppression of Proinflammatory Gene Expression by Topically Applied Flavonoid, Wogonin

  • Lim, Hyun;Park, Haeil;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.442-448
    • /
    • 2004
  • Wogonin (5,7-dihydroxy-8-methoxyflavone) is a down-regulator of cyclooxygenase-2 and inducible nitric oxide synthase expression, contributing to anti-inflammatory activity in vivo. For further characterization of modulatory activity on ploinflammatory gene expression in vivo, the effect of wogonin was examined in this experiment using animal models of skin inflammation. By topical application, wogonin inhibited an edematic response as well as ploinflammatory gene expression against contact dermatitis In mice. Wogonin inhibited ear edema ($19.4-22.6\%$) at doses of $50-200\;{\mu}g$/ear and down-regulated interleukin-$1{\beta}$ induction ($23.1\%$) at $200{\mu}g$/ear in phenol-induced simple irritation. Wogonin ($2{\times}50-2{\times}200{\mu}g$/ear) also inhibited edematic response ($51.2-43.9\%$) and down-regulated ploinflammatory gene expression of cyclooxygenase-2, interleukin-$1{\beta}$, interferon-$\gamma$, intercellular adhesion molecule-1 and inducible nitric oxide synthase with some different sensitivity against picryl chloride-induced delayed hypersensitivity reaction. All these results clearly demonstrate that wogonin is a down-regulator of ploinflammatory gene expression in animal models of skin inflammation. Therefore, wogonin may have potential for a new anti-inflammatory agent against skin inflammation.