• Title/Summary/Keyword: nilpotent semigroup

Search Result 3, Processing Time 0.015 seconds

A CONSTRUCTION OF COMMUTATIVE NILPOTENT SEMIGROUPS

  • Liu, Qiong;Wu, Tongsuo;Ye, Meng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • In this paper, we construct nilpotent semigroups S such that $S^n=\{0\}$, $S^{n-1}{\neq}\{0\}$ and ${\Gamma}(S)$ is a refinement of the star graph $K_{1,n-3}$ with center $c$ together with finitely many or infinitely many end vertices adjacent to $c$, for each finite positive integer $n{\geq}5$. We also give counting formulae to calculate the number of the mutually non-isomorphic nilpotent semigroups when $n=5$, 6 and in finite cases.

ON STRONGLY REGULAR NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • In this paper we introduce the notion of strongly regular near-subtraction semigroups (right). We have shown that a near-subtraction semigroup X is strongly regular if and only if it is regular and without non zero nilpotent elements. We have also shown that in a strongly regular near-subtraction semigroup X, the following holds: (i) Xa is an ideal for every a $\in$ X (ii) If P is a prime ideal of X, then there exists no proper k-ideal M such that P $\subset$ M (iii) Every ideal I of X fulfills $I=I^2$.