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A CONSTRUCTION OF COMMUTATIVE NILPOTENT

SEMIGROUPS

Qiong Liu, Tongsuo Wu, and Meng Ye

Abstract. In this paper, we construct nilpotent semigroups S such that
Sn = {0}, Sn−1 6= {0} and Γ(S) is a refinement of the star graph K1,n−3

with center c together with finitely many or infinitely many end vertices
adjacent to c, for each finite positive integer n ≥ 5. We also give counting
formulae to calculate the number of the mutually non-isomorphic nilpo-
tent semigroups when n = 5, 6 and in finite cases.

1. Introduction

The present paper is motivated by works on the zero-divisor graph, which
was first defined and studied for commutative rings by I. Beck in [2] and later
modified and further studied by D. F. Anderson and P. S. Livingston in [1]. In
2002, DeMeyer, Mckenzie and Schneider began the study of zero-divisor graph
of a commutative semigroup with 0 in [6]. Since then, much work has been
done and this becomes a lively branch in semigroup theory and graph theory,
see e.g. [4, 5, 10, 11, 12].

For a commutative semigroup S with zero element 0 (i.e., 0S = 0), the
zero-divisor graph of S denoted by Γ(S), is a simple undirected graph. The
vertex set is Z(S)∗, the set of all nonzero zero-divisors of S, where for distinct
x, y ∈ Z(S)∗, there is an edge connecting x and y if and only if xy = 0.

For notions and results about commutative semigroups, we use [7] as a basic
reference. We adopt the graph theoretic notations from [3]. Especially we use
K1,n to denote the star graph (i.e., a special complete bipartite graph). Recall
that a simple graph G is called a refinement of a connected simple graph H

if V (G) = V (H) and a − b in H implies a − b in G for all distinct vertices of
G, where a − b means that a 6= b and a is adjacent to b. A vertex c is called
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a center of a graph G if c is adjacent to every vertex of G. In [4, Theorem
3(3)], it was proved that any refinement of a star graph has a corresponding
semigroup.

Throughout this paper, for any vertex c in a graph G, let G∗

c be the subgraph
of G induced on the following vertex set

V (G) \ { u ∈ V (G)|u = c or u is an end vertex adjacent to c}.

In this paper, we construct nilpotent semigroup S such that Sn = {0}, Sn−1 6=
{0} and the zero-divisor graph Γ(S) is a refinement of a star graph K1,n−3

together with arbitrarily many end vertices adjacent to the center, where n ≥ 5.
We also prove that there is (up to isomorphism) exactly one nilpotent semigroup
satisfying this condition. With the aid of the detailed structure results just
mentioned, we are able to give a counting formula for calculating the number
of mutually non-isomorphic nilpotent semigroups S such that Γ(S) ∼= K1,n−3,
when n = 5, 6 and Γ(S) is a finite graph.

Now we record a general result on the centers of a refinement of a star graph.
Recall that an ideal I of S is called an annihilating ideal if I = Ann(x) for some
x ∈ S.

Proposition 1.1. For any semigroup S with 0 whose zero-divisor graph Γ(S)
is a refinement of a star graph with c as one of its centers, either c2 = c or

c2 = 0 holds.

Proof. Let Z(S) be the set of all zero-divisors of S. Assume further that
Z(S) is not an annihilating ideal of S. Then Z(S) \ {c} = Ann(c) E S and
c2 6= 0. Clearly, we can see that Ann(c) is a maximal annihilating ideal of
S, thus Ann(c) is a prime ideal of S. We assert c2 = c. In fact if c2 6= c,
then c2 ∈ Ann(c). Since Ann(c) is a prime ideal of S, we obtain c ∈ Ann(c).
Thus c2 = 0, a contradiction. If Z(S) is an annihilating ideal of S, then
Z(S) = Ann(c) and therefore c2 = 0. �

Corollary 1.2. Assume that S is a nilpotent semigroup whose zero-divisor

graph Γ(S) is a refinement of a star graph with a center c. Then c2 = 0.

2. Main result

Theorem 2.1. For any finite integer n ≥ 5, let m = n − 3. For any finite

or infinite set T with |T | ≥ 1, we fix an element t0 ∈ T . Let S = {0, c} ∪
{a1, a2, . . . , am} ∪ T be a disjoint union of three subsets. Define in S a binary

operation by 0S = S0 = {0} = cS = Sc and the following:

T 2 = {am}, aiT = {ai−1} = Tai, aiaj = ai−1aj+1, ∀1 ≤ i, j ≤ m,

where we order am+1 = t0 and a0 = c, so that aiam = ai−1t0, a1t = c, a1aj =
caj+1 = 0. Then S is a commutative semigroup with zero element 0 such that

(1) ai ∈ Sn−i−1 \ Sn−i (∀ 1 ≤ i ≤ m). In particular, Sn−1 6= {0} and

Sn = {0}.
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(2) Γ(S) = (Gn∪T )+{c} and Γ(S)∗c = Gn, where |V (Gn)| = n−3 and Gn is

the subgraph induced on {a1, a2, . . . , am}. In particular, Γ(S) is a refinement of

K1,n−3 with center c together with finitely many or infinitely many end vertices

adjacent to the center c.

Proof. First, the multiplication defined in S is clearly well defined. Without
loss of generality, assume 1 ≤ i ≤ j ≤ m. Then ajai = aj−(j−i)ai+(j−i) = aiaj
and it follows from the construction that the law of commutativity holds in S.

Second, we need to verify the associativity of the binary operation defined on
S. Without loss of generality, it is only necessary to test the case |T | = 2, m =
3. Then S = {0, c, a1, a2, a3, t1, t2}, and we have the following multiplication
table: The set {a2, t1, t2} is a generating set of S under the multiplication table

Table 1

· 0 c a1 a2 a3 t1 t2
0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0
a1 0 0 0 0 0 c c

a2 0 0 0 0 c a1 a1
a3 0 0 0 c a1 a2 a2
t1 0 0 c a1 a2 a3 a3
t2 0 0 c a1 a2 a3 a3

above, since 0 = a22, c = a2t
2
1, a1 = a2t1, a3 = t21. By Light’s associativity test

(see [8]), it is enough to verify that x(uy) = (xu)y for all x, y ∈ S\{0, c}, and u is
any element in the generating set of S. Observe the following two multiplication
tables: where the header row of Table 2 is the values of a2a1, a

2
2, a2a3, a2t1, a2t2,

Table 2

· 0 0 c a1 a1
a1 0 0 0 0 0
a2 0 0 0 0 0
a3 0 0 0 0 0
t1 0 0 0 c c

t2 0 0 0 c c

where the header column of Table 3 is the values of a1a2, a
2
2, a3a2, t1a2, t2a2.

We can see that the entries in the various cells in Table 2 agrees with the entries
in the corresponding cells of Table 3. This shows that x(a2y) = (xa2)y for all
x, y ∈ S\{0, c}. Thus x(a2y) = (xa2)y holds for all x, y in S. Similarly, we
have x(t1y) = (xt1)y and x(t2y) = (xt2)y for all x, y of S. By Light’s test, the
law of associativity holds for S. Thus S is a commutative semigroup with zero
element 0.
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Table 3

· a1 a2 a3 t1 t2
0 0 0 0 0 0
0 0 0 0 0 0
c 0 0 0 0 0
a1 0 0 0 c c

a1 0 0 0 c c

Third, since T 2 = {am}, a1T = {c} and aiT = {ai−1} for all 2 ≤ i ≤ m,
we obtain by induction T p = {am−p+2} = {an−p−1} for all 2 ≤ p < n − 1. In
particular for p = n− 1 we have T n−1 = {c}. Hence Sp 6= {0} since T p ⊆ Sp

for all p < n, and Sn−1 = {0, c}. Thus Sn = {0}, Sn−1 = {0, c}. Obviously,
each vertex in T is an end vertex adjacent to the center vertex c, and Γ(S)\T
is a refinement of the star graph K1,m.

Finally, we claim that ai ∈ Sn−i−1 \ Sn−i holds for each i with 1 ≤ i ≤ m.
In fact, if this is not the case, then assume that j is the least number such that
aj ∈ Sn−j. Then for all i < j we have ai ∈ Sn−i−1 \ Sn−i. Clearly, j ≥ 2
and hence such i exists. By calculation, we have Sn−i−1 = Sn−i ∪ {ai} for all
1 ≤ i ≤ m. Let i = j−1, then Sn−j = Sn−j+1∪{aj−1}. Thus aj ∈ Sn−j+1 since
aj ∈ Sn−j and aj 6= aj−1. Let i = j−2, then Sn−j+1 = Sn−j+2∪{aj−2}. Thus
aj ∈ Sn−j+2 since aj ∈ Sn−j+1 and aj 6= aj−2. Continuing this process until
we get aj ∈ Sn−1. Note that Sn−1 = {0, c}, a contradiction. The contradiction
shows that ai ∈ Sn−i−1 \ Sn−i holds for all 1 ≤ i ≤ m. �

From the proof above, it is easy to prove that the graph G constructed in
Theorem 2.1 has a unique nilpotent semigroup S such that Sn = {0}, Sn−1 6=
{0} and Γ(S) = (Gn ∪ T ) + {c}.

Remark 2.2. For n = 5 and n = 6, we draw the corresponding graphs in
the following Figure 1 and Figure 2, respectively. It can be verified that for
the graph G in Figure 1 (respectively, in Figure 2), if Sk = {0} for some k

and Γ(S) = G, then S5 = {0} (S6 = {0} respectively). Also there exists a
unique nilpotent semigroup S such that S5 = {0}, S4 6= {0} (respectively,
S6 = {0}, S5 6= {0}) and Γ(S) = G.

a

| �
T − c − b

Figure 1
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d − a − b

� | �
T − c

Figure 2

3. Counting semigroups

In the following, we will consider the number of non-isomorphic correspond-
ing semigroups of the graph G in Figure 1 and Figure 2. First, we give some
known structural results which we have obtained in [9].

Lemma 3.1. For a semigroup S, the following statements are equivalent:
(1) S is a semigroup such that S4 = {0}, S3 6= {0} and Γ(S) = (K1,1∪T )+

{c}, where |T | ≥ 1 and Γ(S)∗c = K1,1.

(2) S = {0, c, a, b}∪T is a disjoint union of two subsets, cS = {0} = 0S, ab =
0 = a2, {a, b}T = {c} and exactly one of the following conditions holds:

(i) b2 = 0 and T 2 = {a, b}, where |T | ≥ 2. In this case, S is a disjoint union

of S2 and T , where S2 = {0, c, a, b}.
(ii) b2 ∈ {0, c} and T 2 = {a}, where |T | ≥ 1. In this case, S is a disjoint

union of S2, {b} and T , where S2 = {0, c, a}.

Lemma 3.2. For any semigroup S, the following statements are equivalent:
(1) S is a semigroup such that S5 = {0}, S4 6= {0} and Γ(S) = (K1,2∪T )+

{c}, where |T | ≥ 1 and Γ(S)∗c = K1,2.

(2) S = {0, c, a, b, d} ∪ T is a disjoint union of two subsets, cS = {0} = 0S,
ab = ad = 0, bd = b2 = c, a2 = 0, aT = {c}, {b, d}T = {a} and exactly one of

the following conditions holds:
(i) d2 = c, and T 2 = {b, d}. This is the case only when |T | ≥ 2. In this case,

S is a disjoint union of S2 and T , where S2 = {0, c, a, b, d} and S3 = {0, c, a}.
(ii) d2 ∈ {0, c} and T 2 = {b}. In this case, S is a disjoint union of S2, {d}

and T , where S2 = {0, c, a, b} and S3 = {0, c, a}.

Lemma 3.3. For any semigroup S, the following statements are equivalent:
(1) S is a semigroup such that S4 = {0}, S3 6= {0} and Γ(S) = (K1,2∪T )+

{c}, where |T | ≥ 1 and Γ(S)∗c = K1,2.

(2) S = {0, c, a, b, d} ∪ T is a disjoint union of two subsets, where |T | ≥ 1,
cS = {0} = 0S, ab = ad = 0, a2 = 0, bd = c, {a, b}T = {c} and exactly one of

the following conditions holds:
(i) b2 = 0, and either d2 ∈ {0, c}, dT = {a}, T 2 = {b}; or d2 = a, dT =

{b}, T 2 = {b}. In each subcase, S2 = {0, c, a, b}.
(ii) {b2, d2} ⊆ {0, c}, dT = {c} and T 2 = {a}. In this case, S2 = {0, c, a}.

Let X = {i | 1 ≤ i ≤ n} and Y = {0, 1}. Let H be the cyclic group of order
two which is generated by the permutation (0, 1). Let F be the set of all maps
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from X × X to Y . Define in F two equivalent relations respectively in the
following ways:

(i) h ∼2 k if and only if there exists a permutation σ ∈ Sn such that
h(i, j) = k(σ(i), σ(j)) for all 1 ≤ i, j ≤ n.

(ii) h ∼1 k if and only if there exists a permutation σ ∈ Sn and a permutation
τ ∈ H such that h(i, j) = τk(σ(i), σ(j)) for all 1 ≤ i, j ≤ n.

Let A(n) and B(n) be the number of equivalent classes relative to ∼1 and
∼2, respectively. Recall that in Sn two permutations are conjugate if and only
if they have the same type when decomposed into products of mutually disjoint
cyclic permutations. Thus Burnside’s Lemma could be used to calculate the
B(n). We have a program to compute the B(n) via a computer for all n ≤ 50.

When 4 ∤ n, we observe that A(n) = B(n)
2 .

Another way to interpret the numbers A(n) and B(n) is illustrated in the
following. Consider the following graphs with the given set X of n vertices.
Each vertex is allowed to have at most one loop and every pair of distinct
vertices can have at most one edge. Then the largest such graph is the complete
graph Kn together with n loops. We denote this graph as K◦

n. Then each f

in F is just the adjacency matrix of a corresponding graph Gf . Thus B(n) is
just the number of non-isomorphic such graphs obtained on the given set of n
vertices. For τ = (0, 1), notice that τ(f) corresponds to the complement graph
of Gf in K◦

n. In the following Figure 3, G = K◦

3 and H is the complement
graph of L in K◦

3 .

G H L

Figure 3

This gives another explanation to the number A(n). Let E be the set of all
subgraphs G of K◦

n such that G has the n vertices. Define in E an equivalent
relation in the following way: G1 and G2 are equivalent if and only if either
G1

∼= G2 or G1 is isomorphic to the complement of G2 in K◦

n. Then A(n) is
the number of the equivalent classes.

Theorem 3.4. (1) For any finite set T with |T | ≥ 2, let G = (K1,1∪T )+{c} be

a graph with G∗

c = K1,1. Then G has f(n) mutually non-isomorphic nilpotent

semigroups, where f(n) = A(n) + 3n+ 5, n = |T |.
(2) The graph K3+1 (i.e., (K1,1∪{b})+{c}) has 9 mutually non-isomorphic

nilpotent semigroups.

Proof. (1) Assume |T | ≥ 2 and let S be a nilpotent semigroup whose zero-
divisor graph is Γ(S) = (K1,1 ∪T )+ {c}. By Theorem 2.1, S5 = {0} and there
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is exactly one semigroup S such that S5 = {0} and S4 6= {0}. From Lemma 3.1
we can see that in case (i), S is completely determined by the tt′ for all t, t′ ∈ T ,
which could be freely chosen from the set {a, b} such that T 2 = {a, b}. In case
(ii), S is completely determined by b2, which is 0 or c. Hence, when S4 = {0}
and S3 6= {0}, the number of mutually non-isomorphic nilpotent semigroups
is (A(n) − 1) + 2, where n ≥ 2. The remaining case is S3 = {0}, S2 = {0, c}.
By hypothesis, there exist distinct elements a, b ∈ S \ {0, c} such that ab = 0.
Clearly, a, b are symmetric. In this case, S is completely determined by the
vector (a2, b2) which could be one of the (0, 0), (c, 0), (c, c), and the number of
end vertices adjacent to c whose square is c. Thus the number of mutually
non-isomorphic nilpotent semigroups is 3(n+ 1). Therefore, the total number
of mutually non-isomorphic nilpotent semigroups is f(n) = A(n)+3n+5, when
n ≥ 2.

(2) In this case, we can see that |T | = 1. Thus case (i) of Lemma 3.1 does
not exist. Similar to (1) observation, we can easily find that the total number
of mutually non-isomorphic nilpotent semigroups is 9 when Γ(S) = K3+1. �

Theorem 3.5. (1) Suppose G = (K1,2 ∪ T ) + {c} is a graph satisfying G∗

c =
K1,2, where |T | ≥ 2. Then G has g(n) mutually non-isomorphic nilpotent

semigroups, where g(n) = A(n) + 6n+ 14 and n = |T |.
(2) The graph (K1,2 ∪ {b}) + {c} has 21 mutually non-isomorphic nilpotent

semigroups.

Proof. (1) Assume |T | ≥ 2 and let S be a nilpotent semigroup such that Γ(S) =
(K1,2 ∪ T ) + {c}. By Theorem 2.1, there is exactly one nilpotent semigroup
S with S6 = {0} and S5 6= {0}. Then, there are still three remaining cases:
(1) S5 = {0} but S4 6= {0}; (2) S4 = {0} but S3 6= {0}; (3) S3 = {0}
but S2 6= {0}. When S5 = {0}, S4 = {0, c}, by Lemma 3.2, we find that
in case (i), S is completely determined by an n × n matrix taken from in
T 2, where T 2 = {b, d}. In case (ii), we easily know that the number is 2.
So in this case, the number of mutually non-isomorphic nilpotent semigroups
is (A(n) − 1) + 2, where n ≥ 2. When S4 = {0}, S3 = {0, c}, from the
multiplication formula we have given in Lemma 3.3 we can easily get that in
case (i), the number is 3. While in case (ii), the number is also 3. Hence, in this
condition, the total number of mutually non-isomorphic nilpotent semigroups
is 6. Finally, we will discuss S3 = {0}, S2 = {0, c}. By assumption, there
exist distinct elements a, b, d ∈ S \ {0, c} such that ab = ad = 0, bd 6= 0.
Obviously, b, d are symmetric. S is completely determined by a2, b2, d2 and the
number of end vertices in T whose square is c. So in this case, the number of
mutually non-isomorphic nilpotent semigroups is 2× 3× (n+1) = 6(n+1). To
conclude, the total number of mutually non-isomorphic nilpotent semigroups
is g(n) = 1 + (A(n)− 1) + 2 + 6 + 6(n+ 1) = A(n) + 6n+ 14, when n ≥ 2.

(2) When |T | = 1, we can see that Lemma 3.2(i) does not exist. So the total
number of mutually non-isomorphic nilpotent semigroups is 21, follows directly
from the argument of (1). �
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In the end of the paper, we list the first six values for B(n), A(n), f(n) and
g(n) respectively in the following table:

Table 4

n 1 2 3 4 5 6
B(n) 0 6 20 90 544 5096
A(n) 0 3 10 46 272 2548

f(n) = A(n) + 3n+ 5 (n ≥ 2) 9 14 24 63 292 2571
g(n) = A(n) + 6n+ 14 (n ≥ 2) 21 29 42 84 316 2598
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