• Title/Summary/Keyword: next-generation non-volatile RAM

Search Result 8, Processing Time 0.02 seconds

Way-set Associative Management for Low Power Hybrid L2 Cache Memory (고성능 저전력 하이브리드 L2 캐시 메모리를 위한 연관사상 집합 관리)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • STT-RAM is attracting as a next generation Non-volatile memory for replacing cache memory with low leakage energy, high integration and memory access performance similar to SRAM. However, there is problem of write operations as the other Non_volatile memory. Hybrid cache memory using SRAM and STT-RAM is attracting attention as a cache memory structure with lowe power consumption. Despite this, reducing the leakage energy consumption by the STT-RAM is still lacking access to the Dynamic energy. In this paper, we proposed as energy management method such as a way-selection approach for hybrid L2 cache fo SRAM and STT-RAM and memory selection method of write/read operation. According to the simulation results, the proposed hybrid cache memory reduced the average energy consumption by 40% on SPEC CPU 2006, compared with SRAM cache memory.

A Review: Comparison of Fabrication and Characteristics of Flexible ReRAM and Multi-Insulating Graphene Oxide Layer ReRAM (산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교)

  • Kim, Dong-Kyun;Kim, Taeheon;Yoon, Taehwan;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1369-1375
    • /
    • 2016
  • A rapid progress of the next-generation non-volatile memory device has been made in recent years. Metal/insulator/Metal multi-layer structure resistive RAM(ReRAM) has attracted a great deal of attention because it has advantages of simple fabrication, low cost, low power consumption, and low operating voltage. This paper describes the working principle of the ReRAM device, a review of fabrication techniques, and characteristics of flexible ReRAM devices using graphene oxide as an insulating layer and ReRAM devices using multi-layered insulator. The switching characteristics of the above ReRAM devices have been compared. The oxidized graphene could be employed as an insulator of next generation ReRAM devices.

Hybrid Main Memory Systems Using Next Generation Memories Based on their Access Characteristics (차세대 메모리의 접근 특성에 기반한 하이브리드 메인 메모리 시스템)

  • Kim, Hyojeen;Noh, Sam H.
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.183-189
    • /
    • 2015
  • Recently, computer systems have encountered difficulties in making further progress due to the technical limitations of DRAM based main memory technologies. This has motivated the development of next generation memory technologies that have high density and non-volatility. However, these new memory technologies also have their own intrinsic limitations, making it difficult for them to currently be used as main memory. In order to overcome these problems, we propose a hybrid main memory system, namely HyMN, which utilizes the merits of next generation memory technologies by combining two types of memory: Write-Affable RAM(WAM) and Read-Affable RAM(ReAM). In so doing, we analyze the appropriate WAM size for HyMN, at which we can avoid the performance degradation. Further, we show that the execution time performance of HyMN, which provides an additional benefit of durability against unexpected blackouts, is almost comparable to legacy DRAM systems under normal operations.

Enhancing Dependability of Systems by Exploiting Storage Class Memory (스토리지 클래스 메모리를 활용한 시스템의 신뢰성 향상)

  • Kim, Hyo-Jeen;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we adopt Storage Class Memory, which is next-generation non-volatile RAM technology, as part of main memory parallel to DRAM, and exploit the SCM+DRAM main memory system from the dependability perspective. Our system provides instant system on/off without bootstrapping, dynamic selection of process persistence or non-persistence, and fast recovery from power and/or software failure. The advantages of our system are that it does not cause the problems of checkpointing, i.e., heavy overhead and recovery delay. Furthermore, as the system enables full application transparency, our system is easily applicable to real-world environments. As proof of the concept, we implemented a system based on a commodity Linux kernel 2.6.21 operating system. We verify that the persistence enabled processes continue to execute instantly at system off-on without any state and/or data loss. Therefore, we conclude that our system can improve availability and reliability.

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

Design and Implementation of the Flash File System that Maintains Metadata in Non-Volatile RAM (메타데이타를 비휘발성 램에 유지하는 플래시 파일시스템의 설계 및 구현)

  • Doh, In-Hwan;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.2
    • /
    • pp.94-101
    • /
    • 2008
  • Non-volatile RAM (NVRAM) is a form of next-generation memory that has both characteristics of nonvolatility and byte addressability each of which can be found in nonvolatile storage and RAM, respectively. The advent of NVRAM may possibly bring about drastic changes to the system software landscape. When NVRAM is efficiently exploited in the system software layer, we expect that the system performance can be significantly improved. In this regards, we attempt to develop a new Flash file system, named MiNVFS (Metadata in NVram File System). MiNVFS maintains all the metadata in NVRAM, while storing all file data in Flash memory. In this paper, we present quantitative experimental results that show how much performance gains can be possible by exploiting NVRAM. Compared to YAFFS, a typical Flash file system, we show that MiNVFS requires only minimal time for mounting. MiNVFS outperforms YAFFS by an average of around 400% in terms of the total execution time for the realistic workloads that we considered.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Thermal Stability of SiO2 Doped Ge2Sb2Te5 for Application in Phase Change Random Access Memory

  • Ryu, Seung-Wook;Ahn, Young-Bae;Lee, Jong-Ho;Kim, Hyeong-Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.146-152
    • /
    • 2011
  • Thermal stability of $Ge_2Sb_2Te_5$ (GST) and $SiO_2$ doped GST (SGST) films for phase change random access memory applications was investigated by observing the change of surface roughness, layer density and composition of both films after isothermal annealing. After both GST and SGST films were annealed at $325^{\circ}C$ for 20 min, root mean square (RMS) surface roughness of GST was increased from 1.9 to 35.9 nm but that of SGST was almost unchanged. Layer density of GST also steeply decreased from 72.48 to 68.98 $g/cm^2$ and composition was largely varied from Ge : Sb : Te = 22.3 : 22.1 : 55.6 to 24.2 : 22.7 : 53.1, while those of SGST were almost unchanged. It was confirmed that the addition of a small amount of $SiO_2$ into GST film restricted the deterioration of physical and chemical properties of GST film, resulting in the better thermal stability after isothermal annealing.