• Title/Summary/Keyword: next-generation matrix

Search Result 68, Processing Time 0.026 seconds

Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries (이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

PREVENTION STRATEGIES TO CONTROL AN EPIDEMIC USING A SEIQHRV MODEL

  • Mohit Soni;Rajesh Kumar Sharma;Shivram Sharma
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.131-158
    • /
    • 2024
  • This study investigates the impact of precautionary measures, such as isolating exposed individuals, wearing masks, and maintaining physical distance, on preventing infectious disease. A deterministic SEIQHRV epidemic model is employed for this purpose. The model's positivity, boundedness, disease-free, and endemic equilibrium points are identified. A sensitivity test assesses the impact of preventive measures on infected classes. Results show that a basic reproduction number less than unity drives disease eradiction, while a higher unity value encourages the adoption of preventive measures.

Low-complexity Joint Transmit/Receive Antenna Selection Algorithm for Multi-Antenna Systems (다중 안테나 시스템을 위한 낮은 복잡도의 송/수신안테나 선택 알고리즘)

  • Son, Jun-Ho;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.943-951
    • /
    • 2006
  • Multi-input-multi-output (MIMO) systems are considered to improve the capacity and reliability of next generation mobile communication. However, the multiple RF chains associated with multiple antennas are costly in terms of size, power and hardware. Antenna selection is a low-cost low-complexity alternative to capture many of the advantages of MIMO systems. We proposed new joint Tx/Rx antenna selection algorithm with low complexity. The proposed algorithm is a method selects $L_R{\times}L_T$ channel matrix out of $L_R{\times}L_T$ entire channel gain matrix where $L_R{\times}L_T$ matrix selects alternate Tx antenna with Rx antenna which have the largest channel gain to maximize Frobenius norm. The feature of this algorithm is very low complexity compare with Exhaustive search which have optimum capacity. In case of $4{\times}4$ antennas selection out of $8{\times}8$ antennas, the capacity decreases $0.5{\sim}2dB$ but the complexity also decreases about 1/10,000 than optimum exhaustive search.

Problems and Solutions of Matrix Organization Structure: Focusing on the Case of H-Corp. Research Institute (매트릭스 조직구조의 문제점과 해결 방안: H사 연구소 사례를 중심으로)

  • Bok, Cheol-Kyu;Lee, Joo-Heon
    • Journal of Industrial Convergence
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Even though there have been so much practical interests in industry, the relevant empirical researches are not sufficient. In this study, we try to identify the problems of matrix organization structure in the semiconductor industry and make suggestions for improvements. Also, we try to find out whether there are differences in the perceptions of the problems among ranks and teams. This study was conducted to the researchers in the matrix organization structure of the H-corp. research institute. The problems we found are as follows. The researchers agreed that the matrix organization structure is appropriate when highly professional members for the development of next-generation semiconductors are participated in the projects. They showed strong wills to participate and succeed in projects. However, the researchers felt that the equipments and manpowers were not enough and too much tasks and workloads were assigned to both the managers and members Also, in an open ended question, the researchers pointed out the problems of the matrix organization structure such as 'weak project manager's authority', 'communication and teamwork issues', 'non-obvious work priorities', 'compensation and benefit system', 'lack of research manpower and equipment'. From the strengths and weaknesses of the matrix organization structure of the semiconductor industry, we provide some suggestions for improvements.

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

Nucleotide and protein researches on anaerobic fungi during four decades

  • Chang, Jongsoo;Park, Hyunjin
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.121-140
    • /
    • 2020
  • Anaerobic fungi habitat in the gastrointestinal tract of foregut fermenters or hindgut fermenters and degrade fibrous plant biomass through the hydrolysis reactions with a wide variety of cellulolytic enzymes and physical penetration through fiber matrix with their rhizoids. To date, seventeen genera have been described in family Neocallimasticaceae, class Neocallimastigomycetes, phylum Neocallimastigomycota and one genus has been described in phylum Neocallimastigomycota. In National Center for Biotechnology Information (NCBI) database (DB), 23,830 nucleotide sequences and 59,512 protein sequences have been deposited and most of them were originated from Piromyces, Neocallimastix and Anaeromyces. Most of protein sequences (44,025) were acquired with PacBio next generation sequencing system. The whole genome sequences of Anaeromyces robustus, Neocallimastix californiae, Pecoramyces ruminantium, Piromyces finnis and Piromyces sp. E2 are available in Joint Genome Institute (JGI) database. According to the results of protein prediction, average Isoelectric points (pIs) were ranged from 5.88 (Anaeromyces) to 6.57 (Piromyces) and average molecular weights were ranged from 38.7 kDa (Orpinomyces) to 56.6 kDa (Piromyces). In Carbohydrate-Active enZYmes (CAZY) database, glycoside hydrolases (36), carbohydrate binding module (11), carbohydrate esterases (8), glycosyltransferase (5) and polysaccharide lyases (3) from anaerobic fungi were registered. During four decades, 1,031 research articles about anaerobic fungi were published and 444 and 719 articles were available in PubMed (PM) and PubMed Central (PMC) DB.

First-principle investigations of the binding between carbon nanotubes and poly(acrylonitrile)

  • Lee, Juho
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.304-307
    • /
    • 2015
  • Carbon nanotubes (CNTs) have been widely accepted and used as the enhancer for polymer nano-composites due to their remarkable mechanical properties. Understandably, the CNT fiber-polymer matrix interface plays a major role in determining the properties of the CNT-polymer nano-composites. Here, using the LCAODFT Lab tool available on the EDISON Nano-Physics site, we performed first-principles density-functional theory calculations to determine the atomic configurations and binding energies of the CNTs in contact with polymers. For the polymer matrixes, we chose poly(acrylonitrile) (PAN), which is one of the most well-known polymer matrixes for the carbon nanofiber nanocomposites. Different chiralities and diameters of pristine CNTs were considered, and several PAN-CNT configurations were prepared based on the atomistic positions and directions of cyano group in PAN. The most favorable configuration of PAN was obtained when the PAN bound parallel to the surface of CNT. Our finding indicates the binding configurations are determined by the direction of the cyano group dominantly rather than the atomistic position of PAN, or the symmetry of CNTs. The result of increasing the length of CNT diameter suggests that PAN is inclinable to align evenly on the surface of relatively large size of CNT with the configuration parallel to the surface. These results obtained in this study will provide the starting point for the design of improved PAN-CNT composites for the next-generation ultra-strong and ultra-light carbon nanofibers.

  • PDF

The Effect of Zr Addition on AM50 Mg Alloys Foam Metals (AM50 Mg합금 발포금속의 제조와 지르코늄 첨가 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.217-223
    • /
    • 2010
  • Foamed metal has become an attractive material, which has unique physical, thermal, acoustic, damping and mechanical properties, because large amount of pores are distributed in the metal matrix. Therefore, metal foam can be used for the light weight application in automotive, locomotive, aerospace fields. Aluminum foams have been developed successfully and will be employed in the next generation of energy absorption boxes. Magnesium alloys are most eligible candidate to substitute aluminum alloy, especially for lower density and higher damping properties in wide industrial fields. Magnesium alloy foams are expected to be particularly advantageous due to two thirds the density of aluminum. However, foaming magnesium have been weakness of high activity, difficult processing and very dangerous. In order to upgrade this problem, AM50 magnesium alloy which has better characteristic is safe to use through foaming time and alloying element in this study.

Electrospun Calcium Metaphosphate Nanofibers: I. Fabrication

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.144-147
    • /
    • 2007
  • Calcium metaphosphate (CMP) nanofibers with a diameter of ${\sim}600nm$ were prepared using electrospun CMP/polyvinylpyrrolidone (PVP) fibers through a process of drying for 5 h in air followed by annealing for 1 h at $650^{\circ}C$ in a vacuum. The viscosity of the CMP/PVP precursor containing 0.15 g/ml of PVP was 76 cP. Thermal analysis results revealed that the fibers were crystallized at $569^{\circ}C$. The crystal phase of the as-annealed fiber was determined to be ${\delta}-CMP\;({\delta}-Ca(PO_3)_2)$. However, the morphology of the fibers changed from smooth and uniform (as-spun fibers) to linked-particle characteristics with a tubular form most likely due to the decomposition of the inner PVP matrix. It is expected that this large amount of available surface area has the potential to provide unusually high bioactivity and fast responses in clinical hard tissue applications.

Performance Improvement Technique for an OFDM System without Guard Interval (보호구간이 없는 OFDM 시스템을 위한 성능 향상 기법)

  • Kim Sung-Hoon;Park Joong-Hoo;Choi Gin-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.382-388
    • /
    • 2005
  • An OFDM system may be a good candidate for a next-generation wireless communication system which requires high-speed and high-rate data transmission. In OFDM systems, guard intervals are inserted to mitigate the effects of ISI (Inter-Symbol Interference). But guard interval insertion degrades the system performance from the standpoint of data rate and bandwidth efficiency. In this paper, a new method to improve the performance of an OFDM system without guard interval. First, PIC (Parallel Interference Cancellation) scheme which can reduce ISI by subtracting the estimated multi-path components from the received signal will be considered. And the proposed system with Pseudo-Decorrelator estimates transmitted signals by using the inverse matrix of cross-correlation matrix relating to interference components. The performance of the proposed system is evaluated through computer simulations and compared with that of the PIC system and an OFDM system without guard interval.