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PREVENTION STRATEGIES TO CONTROL AN EPIDEMIC

USING A SEIQHRV MODEL

Mohit Soni a, ∗, Rajesh Kumar Sharma b and Shivram Sharma c

Abstract. This study investigates the impact of precautionary measures, such as
isolating exposed individuals, wearing masks, and maintaining physical distance,
on preventing infectious disease. A deterministic SEIQHRV epidemic model is em-
ployed for this purpose. The model’s positivity, boundedness, disease-free, and
endemic equilibrium points are identified. A sensitivity test assesses the impact
of preventive measures on infected classes. Results show that a basic reproduc-
tion number less than unity drives disease eradiction, while a higher unity value
encourages the adoption of preventive measures.

1. Introduction

Infectious diseases like Covid-19, Monkeypox, AIDS, and Dengue pose global

threats, leading to health concerns. Despite the importance of vaccinations, uncer-

tainty and noncompliance with guidelines contribute to ongoing infections. Math-

ematical modeling, especially deterministic epidemic modeling, has emerged as a

crucial tool for understanding and controlling the dynamics of infectious diseases.

It aids in forecasting outbreaks, comprehending infection propagation across popu-

lation classes, and guiding effective disease prevention strategies. Beinane et al. [1]

proposed a fractional SEIQHR model, highlighting the enduring endemic nature of

Covid-19 and underscoring the need for continuous preventive measures. Butt et al.

[2] constructed a nonlinear SEIQHR fractional model incorporating the Atangana-

Baleanu (ABC) derivative to address the dynamics of Covid-19.

Butt et al. [3] suggested that implemented strategies, particularly quarantin-

ing exposed individuals, effectively reduce the affected population and contribute to
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achieving herd immunity. Carcione et al. [4] considered a SEIR (susceptible, ex-

posed, infected, and recovered) to study the infected population in Italy. Dwomoh

et al.[6] analyzed the SEIQHRS model in the context of Ghana.

Manchein et al. [13] introduced a SEQIJR model, incorporating quarantine (Q)

and isolation (J) for studying the impact of these measures on the Covid-19 outbreak.

Mandel et al. [14] developed a deterministic model with estimations for the

three Indian states: Maharashtra, Delhi, and Tamil Nadu. James et al. [10] tested

Covid-19’s dynamics in the different countries United States, India, and Brazil.

Safi, M. [16] analyzed the role of quarantine and isolation in epidemiology in his

thesis work. Safi and Gumell [17] have introduced the SEIQHRS model to assess

the collective influence of quarantine measures targeting asymptomatic cases and

isolation strategies for individuals displaying clinical symptoms in the context of

mitigating the transmission of a communicable disease. They ([18], [19]) investigated

a novel mathematical model delineating the transmission dynamics of a disease,

considering the impact of quarantine for latent cases, isolation for symptomatic

cases, and the presence of an imperfect vaccine. Soni et al. [22] estimated basic

reproduction number and herd immunity for India to stop Covid-19. Soni et al. [23]

considered the flattening of the logarithmic plot and discover that the preventative

measures are effective. Sharma S. and Sharma P.K. [20] considered Holling type

II incidence rate for a SIQR model. They [21] also analyzed the Stability of a

SIR model with a saturated incidence rate and Holling functional type II treatment

rate. Umbedkar et al. [24] analyzed an SEIR model with a modified saturated

incidence rate and Holling type II treatment function. Memon et al. [15] exhibited

the importance of isolation and quarantine strategies in the control of an epidemic.

2. Methodology

Inspired by the earlier work done by Kolebaje et al. [11] for the various countries

of Africa, this research propose a deterministic SEIQHRVmodel (susceptible (S), ex-

posed (E), infected severely (Is), infected mildly (Ia), hospitalized (H), quarantined

(Q), recovered (R) and vaccinated (V)). This study includes the vaccinated class

in the previous model of O.T. Kolebaje et al. [11]. The Next-Generation matrix

technique given by Diekmann et al. [5], is used to determine the basic reproduction

number. The simulation is performed on seven highly correlated Indian states using

the MATLAB software to verify the validity of the model. The sensitivity analyze
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explore the importance of various parameters. The information for the states that

would be the subject of the analysis came from the National Informatics Centre

(NIC) of India’s daily reports [9]. Figure 3.1 exhibits the transmission process of

the infection among the different compartments of the population.

3. Formulation of Model

Figure 3.1: SEIQHRV model dynamics among the compartments.

3.1. Diagram of Model This model system runs on the following set of ordinary

differential equations:

dS

dt
= π − β(1− h)SIs − βα(1− h)SIa − λ2S − δ5S + λ1V + ρ2Q+ σR− µS(1)

dE

dt
= β(1− h)SIs + βα(1 − h)SIa − θE − η1E − µE(2)

dIs
dt

= ρθE − γ1Is − η2Is − η4Is − µIs(3)

dIa
dt

= (1− ρ)θE − δ4Ia − γ2Ia − η3Ia − µIa(4)

dQ

dt
= η2Is + η3Ia + η1E − ρ2Q− δ1Q− µQ− ρ1Q(5)
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dH

dt
= ρ1Q− µH − γ3H − δ2H + η4Is(6)

dR

dt
= δ2H + δ1Q+ δ4Ia + δ5S + δ3V − µR− σR(7)

dV

dt
= λ2S − λ1V − µV − δ3V(8)

D(t) = γ1Is(t) + γ2Ia(t) + γ3H(t)(9)

C(t) = η2Is + η3Ia(t) + ρ1Q+ η4Is(10)

N(t) = S(t) + E(t) + Is(t) + Ia(t) +Q(t) +H(t) +R(t) + V (t)(11)

With the initial conditions, S(0) ≥ 0, E(0) ≥ 0, Is(0) ≥ 0, Ia(0) ≥ 0, Q(0) ≥

0,H(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0.

The parameter involved in this model system are described in Table 1.

3.2. Positivity of the solution

Theorem 3.1. If the aforementioned initial circumstances are true, then the system

(1)’s solution. (S(t), E(t), Is(t), Ia(t), Q(t),H(t), R(t), V (t)) must be positive ∀t > 0.

Proof. From the model system equations, we have

dS

dt
= π + λ1V (t) + ρ2Q(t) + σR(t)−M1(t)S,

where M1(t) = β(1− h)Is + βα(1 − h)Ia + λ2 + δ5 + µ.

dS

dt
e
∫ t
0 M1(τ)dτ +M1(t)S(t)e

∫ t
0 M1(τ)dτ = [(π + λ1V + ρ2Q+ σR)]e

∫ t
0 M1(τ)dτ

d

dt

(

S(t)e
∫ t

0
M1(τ)dτ

)

= [(π + λ1V + ρ2Q+ σR)]e
∫ t

0
M1(τ)dτ

S(t)e
∫ t
0 M1(τ)dτ − S(0) =

∫ t

0
(π + λ1V + ρ2Q+ σR)e

∫ t
0 M1(τ)dτdt

S(t) = S(0)e−
∫ t

0
M1(τ)dτ + e−

∫ t

0
M1(τ)dτ

∫ t

0
(π + λ1V + ρ2Q+ σR)e

∫ t

0
M1(τ)dτdt ≥ 0.

(12)

Similarly

E(t) = E(0)e−
∫ t
0 M2(τ)dτ + e−

∫ t
0 M2(τ)dτ

∫ t

0
(β(1 − h)SIs(13)

+ βα(1 − h)SIa)e
∫ t
0 M2(τ)dτdt ≥ 0
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Table 1. Parameter and symbol with their description and value

Parameter Description Unit

π Population growth rate Person day−1

β Transmission rate of disease Person−1day−1

h Part of S(t) taking preventative pre-
cautions

limitless

µ Natural death rate of population Day−1

a Ia’s relative contagiousness com-
pared to Is

limitless

σ Rate at recovered loss their immu-
nity

Day−1

θ
1

Incubation period
= infection rate Day−1

ρ component of infections with symp-
toms

limitless

ρ1 Rate at which quarantine hospital-
ized

Day−1

ρ2 Rate at which quarantine become
susceptible

Day−1

δ1 Rate at which quarantine people re-
covered

Day−1

δ2 Rate at which hospitalized people
recovered

Day−1

δ3 Rate at which vaccinated people re-
covered

Day−1

δ4 Rate at which asymptomatic people
recovered

Day−1

δ5 Rate at which susceptible people re-
covered

Day−1

η1 Rate at which exposed people iso-
lated

Day−1

η2 Rate at which symptomatic people
isolated

Day−1

η3 Rate at which asymptomatic people
isolated

Day−1

η4 Rate at which symptomatic people
hospitalized

Day−1

γ1, γ2, γ3 COVID-19-related death rate Day−1

λ1 Rate of vaccination for those who
are susceptible

Day−1

λ2 Rate at which vaccinated become
susceptible

Day−1
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Figure 4.1: Endemic situation in Maharashtra

Is(t) = Is(0)e
−

∫ t
0 M3(τ)dτ + e−

∫ t
0 M3(τ)dτ

∫ t

0
ρθEe

∫ t
0 M3(τ)dτdt ≥ 0

(14)

Ia(t) = Ia(0)e
−

∫ t
0 M4(τ)dτ + e−

∫ t
0 M4(τ)dτ

∫ t

0
(1− ρ)θEe

∫ t
0 M4(τ)dτdt ≥ 0

(15)

Q(t) = Q(0)e−
∫ t
0 M5(τ)dτ + e−

∫ t
0 M5(τ)dτ

∫ t

0
(η1E + η2Is + η3Ia)e

∫ t
0 M5(τ)dτdt ≥ 0

(16)

H(t) = H(0)e−
∫ t
0 M6(τ)dτ + e−

∫ t
0 M6(τ)dτ

∫ t

0
(ρ1Q+ η4Is)e

∫ t
0 M6(τ)dτdt ≥ 0

(17)

R(t) = R(0)e−
∫ t
0 M7(τ)dτ

(18)

+ e−
∫ t
0 M7(τ)dτ

∫ t

0
(δ2H + δ1Q+ δ4Ia + δ5S + δ3V )e

∫ t
0 M7(τ)dτdt ≥ 0

V (t) = V (0)e−
∫ t
0 M8(τ)dτ + e−

∫ t
0 M8(τ)dτ

∫ t

0
(λ2S)e

∫ t
0 M8(τ)dτdt ≥ 0

(19)
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Figure 4.2: Endemic situation in Delhi

Where

M2(τ) = θ + η1 + µ,M3(τ) = γ1 + η2 + η4 + µ,M4(τ) = δ4 + γ2 + η3 + µ,

M5(τ) = ρ2 + δ1 + µ+ ρ1,M6(τ) = µ+ γ3 + δ2,M7(τ) = µ+ σ,

M8(τ) = δ1 + µ+ δ3.

�

3.3. Boundedness

Theorem 3.2. In the region ∆, the model system’s solutions are uniformly bounded.

∆=
{

(S,E, Is, Ia, Q,H,R, V ) ∈ ℜ8
+ : 0 ≤ S + E + Is + Ia +Q+H +R+ V ≤

π

µ

}

.

Proof. Let (S,E, Is, Ia, Q,H,R, V ) be any non negative solution of model system.

Let N(0) = S(0) + E(0) + Is(0) + Ia(0) +Q(0) +H(0) +R(0) + V (0) > 0.

Now, addition of all above model provides,
dN

dt
= π − µ(S + E + Is + Ia +Q+H +R+ V )− γ1Is − γ2Ia − γ3H ≤ π − µN
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Figure 4.3: Endemic situation in Kerala

So by differential equation theory, we obtain

N ≤ N(0)e−µt +
π

µ
(1− e−µt), so if t→ ∞, 0 ≤ N(t) ≤

π

µ
.

Thus, the region ∆ is positively invariant, so that all solutions of model system with

initial conditions in ℜ8
+. As a result, the initial value problem is well posed. �

3.4. Basic Reproduction Number This number represents the typical number

of infectious individuals who are infected by a single infected individual throughout

the course of their whole infectious period in a community that is entirely susceptible.

The disease spread classes are E, Ia, Is, Q.

The disease spread system is given by:

dE

dt
= β(1− h)SIs + βα(1− h)SIa − θE − η1E − µE(20)

dIs
dt

= ρθE − γ1Is − η2Is − η4Is − µIs(21)

dIa
dt

= (1− ρ)θE − δ4Ia − γ2Ia − η3Ia − µIa(22)
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Figure 4.4: Endemic situation in Uttar Pradesh

dQ

dt
= η2Is + η3Ia + η1E − ρ2Q− δ1Q− µQ− ρ1Q(23)

The above system’s (20-23) compact matrix form is given by

dX

dt
= F(X)− V(X), where X = (E, Is, Ia, Q)T(24)

where F and V are the new infectious matrix and transfer matrix between compart-

ments respectively.

(25) F =









β(1− h)SIs + βα(1− h)SIa
0
0
0









(26) V =









µE + θE + η1E
−ρθE + (µ + γ1 + η2 + η4)Is

−(1− ρ)θE + (δ4 + µ+ γ2 + η3)Ia
−η1E − η2Is − η3Ia + (ρ1 + ρ2 + δ1 + µ)Q
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Figure 4.5: Endemic situation in Haryana

The partial derivatives of F and V with respect to E, Is, Ia and Q at the disease free

equilibrium point (π
µ
, 0, 0, 0)T provides the transition matrix K and L respectively.

(27) K =











0
π

µ
β(1− h)

π

µ
αβ(1 − h) 0

0 0 0 0
0 0 0 0
0 0 0 0











(28) L =









µ+ θ + η1 0 0 0
−ρθ µ+ γ1 + η2 + η4 0 0

−(1− ρ)θ 0 µ+ γ2 + η3 + δ4 0
−η1 −η2 −η3 ρ1 + ρ2 + δ1 + µ









We define the next generation matrix by KL−1, and the basic reproduction number

R0 is the radius of spectral KL−1.
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Figure 4.6: Endemic situation in Madhya Pradesh

(29)

KL−1 =













π
µ
β(1− h)ρθ

L1L2
+

π
µ
β(1− h)(1 − ρ)αθ

L1L3

π

µL2
β(1− h)

π

µL3
β(1− h) 0

0 0 0 0
0 0 0 0
0 0 0 0













where L1 = µ+ θ + η1, L2 = µ+ γ1 + η2 + η4, L3 = µ+ γ2 + η3 + δ4.

R0 =

π
µ
β(1− h)ρθ

L1L2
+

π
µ
β(1− h)(1 − ρ)αθ

L1L3
(30)

R0 = RA
0 +RB

0(31)

where RA
0 =

π
µ
β(1− h)ρθ

L1L2
, RB

0 =

π
µ
β(1− h)(1 − ρ)αθ

L1L3

RA
0 denotes the number of secondary infections by an infected person during their

time spent in the infected population. It is a measure of the number of the (1−h)π
µ

susceptible population that are infected by ρθ people in the infected group with a

bilinear transmission rate β, with 1
µ+γ1+η2+η4

and 1
µ+θ+η1

being the time an infected
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Figure 4.7: Endemic situation in Karnataka

individual remains in the infected and exposed compartment respectively. RB
0 de-

notes the number of secondary infections by an asymptotic infected person during

their time spent in the asymptotic population. It represent the number of the (1−h)π
µ

susceptible population that are infected by (1−ρ)θ people in the asymptomatic com-

partment with an enhanced transmission rate αβ and 1
µ+γ2+η3+δ4

being the time an

individual remains in the asymptomatic compartment.

3.5. Equilibrium Points Setting all model equations equal to zero yields the

model system’s equilibrium points. The disease free equilibrium point is XDFE =

(π
µ
, 0, 0, 0, 0, 0, 0, 0) and the endemic equilibrium point is

XEE = (S∗, E∗, I∗s , I
∗
a , Q

∗,H∗, R∗, V ∗, ),

where

S∗ =
π

µR0
,(32)

I∗s = K1E
∗, where K1 =

ρθ

µ+ γ1 + η2 + η4
,(33)
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Figure 4.8: Endemic situation in Maharashtra

I∗a = K2E
∗, where K2 =

(1− ρ)θ

δ4 + µ+ γ2 + η3
,(34)

Q∗ = (K1η2 +K2η3 + η1)
E∗

ρ1 + ρ2 + µ+ δ1
,(35)

H∗ =
((η2 + η4)K1 +K2η3)ρ1E

∗

(ρ1 + ρ2 + µ+ δ1)(µ+ γ3 + δ2)
,(36)

R∗ =
1

µ+ σ

[

{

(δ1 +
δ2ρ1

µ+γ3+δ2
)(K1η2 +K2η3 + η1)

ρ1 + ρ2 + µ+ δ1
+

η4δ2K1

µ+ γ3 + δ2
+ δ4K2

}

E∗(37)

+
(δ5 +

δ3λ2
λ1+µ+δ3

)π

µR0

]

,

V ∗ =
λ2π

(λ1 + µ+ δ3)µR0
,(38)

E∗ =
π + λ1V

∗ − (θ + η1 + µ)S∗

(θ + η1 + µ)− ρ2M1 − σM2
(39)

Where
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Figure 4.9: Endemic situation in Delhi

M1 =
η1 + η2(

ρθ
µ+γ1+η2+η4

) + η3(1−ρ)θ
µ+γ2+η3+δ4

µ+ δ1 + ρ1 + ρ2
,

M2 =
δ1M1 + δ2

(ρ1M1+η4
ρθ

(µ+γ1+η2+η4)
)

µ+γ3+δ2
+ δ4(

(1−ρ)θ
µ+γ2+η3+δ4

) + δ5(
ρθ

µ+γ1+η2+η4
)

µ+ σ
.

4. Stability at Equilibrium

4.1. Local Stability at Equilibrium The Jacobian matrix of the dynamic system

is given by:

J =








−∆1−(λ2+δ5+µ) 0 −β(1−h)S −αβ(1−h)S ρ2 0 σ λ1
∆1 −(θ+η1+µ) β(1−h)S αβ(1−h)S 0 0 0 0

0 ρθ −(γ1+η2+η4+µ) 0 0 0 0 0

0 (1−ρ)θ 0 −(γ2+η3+δ4+µ) 0 0 0 0

0 η1 η2 η3 −(ρ1+ρ2+δ1+µ) 0 0 0

0 0 η4 0 ρ1 −(δ2+γ3+µ) 0 0

δ5 0 0 δ4 δ2 δ1 −(µ+σ) δ3
λ2 0 0 0 0 0 0 −(λ1+δ3+µ)
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Figure 4.10: Endemic situation in Kerala

where ∆1 = β(1− h)Is + αβ(1 − h)Ia At disease free equilibrium

JDFE =












−(λ2+δ5+µ) 0 −
β(1−h)π

µ
−

αβ(1−h)π
µ

ρ2 0 σ λ1

0 −(θ+η1+µ)
β(1−h)π

µ
αβ(1−h)π

µ
0 0 0 0

0 ρθ −(γ1+η2+η4+µ) 0 0 0 0 0

0 (1−ρ)θ 0 −(γ2+η3+δ4+µ) 0 0 0 0

0 η1 η2 η3 −(ρ1+ρ2+δ1+µ) 0 0 0

0 0 η4 0 ρ1 −(δ2+γ3+µ) 0 0

δ5 0 0 δ4 δ2 δ1 −(µ+σ) δ3
λ2 0 0 0 0 0 0 −(λ1+δ3+µ)













At endemic equilibrium

J =








−∆∗

1−(λ2+δ5+µ) 0 −β(1−h)S∗
−αβ(1−h)S∗ ρ2 0 σ λ1

∆∗

1 −(θ+η1+µ) β(1−h)S∗ αβ(1−h)S∗ 0 0 0 0

0 ρθ −(γ1+η2+η4+µ) 0 0 0 0 0

0 (1−ρ)θ 0 −(γ2+η3+δ4+µ) 0 0 0 0

0 η1 η2 η3 −(ρ1+ρ2+δ1+µ) 0 0 0

0 0 η4 0 ρ1 −(δ2+γ3+µ) 0 0

δ5 0 0 δ4 δ2 δ1 −(µ+σ) δ3
λ2 0 0 0 0 0 0 −(λ1+δ3+µ)









where ∆∗
1 = β(1−h)I∗s +αβ(1−h)I

∗
a By employing MATLAB software and utilizing

the values presented in Table 2, we conducted an assessment of the eigenvalues



146 Mohit Soni, Rajesh Kumar Sharma & Shivram Sharma

Figure 4.11: Endemic situation in Uttar Pradesh

corresponding to the disease-free and endemic equilibrium points for seven distinct

Indian states. Notably, our findings indicate that at the disease-free equilibrium

point, all eigenvalues possess negative real parts across the aforementioned states.

This observation, in accordance with the Routh-Hurwitz criterion, establishes local

asymptotic stability when the basic reproductive number (R0) is less than 1 and

instability when R0 exceeds 1. Similarly, our analysis reveals that the endemic

equilibrium point exhibits local asymptotic stability across all seven states when R0

surpasses 1, as evidenced by the negativity of the real parts of all eigenvalues.

4.2. Global Stability at Disease Free Equilibrium

Theorem 4.1. The disease-free equilibrium is globally asymptotically stable if R0 <

1 and unstable if R0 > 1.

Proof. Consider the Lyapunov function L(E, Is) = κ1E+κ2Is, where κ1 and κ2 are

non-negative parameters. Obviously L(E, Is) ∈ C
1. Moreover, at DFE L(E, Is) = 0
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Figure 4.12: Endemic situation in Haryana

and it is positive definite ∀(S,E, Is, Ia, Q,H,R, V ) ∈ ℜ8+. Now,

dL

dt
= κ1

dE

dt
+ κ2

dIs
dt

dL

dt
= κ1(β(1− h)SIs + βα(1 − h)SIa − θE − η1E − µE)

+ κ2(ρθE − γ1Is − η2Is − η4Is − µIs)

dL

dt
= κ1(β(1− h)SIs + βα(1 − h)SIa)− {κ1(θ + η1 + µ)− κ2ρθ}E

− κ2(γ1 + η2 + η4 + µ)Is

Choosing κ1 = ρθ, κ2 = (θ + η1 + µ) and putting S = π
µ
, Ia = 0. We obtain,

dL

dt
=

{

β(1− h)πρθ

µ
− (θ + η1 + µ)(γ1 + η2 + η4 + µ)

}

Is
dL

dt
= (θ + η1 + µ)(γ1 +

η2 + η4 + µ)(RA
0 − 1) Since RA

0 < 1 follows from R0 < 1, therefore it is clear

that dL
dt
< 0, when R0 < 1 and Moreover, dL

dt
= 0, if Ia = 0. Hence, by LaSalle’s

Invariance Principle [12], the disease-free equilibrium point is globally asymptotically

stable. �
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Figure 4.13: Endemic situation in Madhya Pradesh

4.3. Global Stability at Endemic Equilibrium

Theorem 4.2. If R0 > 1, then there exist a disease- endemic equilibrium χ1 and it

is globally asymptotically stable in the interior of ∆.

Proof. Given that R0 > 1, then the existence and local asymptotic stability of the

disease- endemic equilibrium is guaranteed. Consider the Lyapunov function.

L(E, Is, Ia, Q,H,R, V ) = E − E∗ − E∗ ln

(

E

E∗

)

+ Is − I∗s − I∗s ln

(

Is
I∗s

)

+ Ia − I∗a

− I∗a ln

(

Ia
I∗a

)

+Q−Q∗ −Q∗ ln

(

Q

Q∗

)

+H −H∗ −H∗ ln

(

H

H∗

)

+ V − V ∗

− V ∗ ln

(

V

V ∗

)

dL

dt
=

(

1−
E∗

E

)

dE

dt
+

(

1−
I∗s
Is

)

dIs
dt

+

(

1−
I∗a
Ia

)

dIa
dt

+

(

1−
Q∗

Q

)

dQ

dt

+

(

1−
H∗

H

)

dH

dt
+

(

1−
V ∗

V

)

dV

dt
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Figure 4.14: Endemic situation in Karnataka

dL

dt
=

(

1−
E∗

E

)

[β(1− h)SIs + βα(1 − h)SIa − θE − η1E − µE]

+

(

1−
I∗s
Is

)

[ρθE − γ1Is − η2Is − η4Is − µIs]

+

(

1−
I∗a
Ia

)

[(1− ρ)θE − δ4Ia − γ2Ia − η3Ia − µIa]

+

(

1−
Q∗

Q

)

[η2Is + η3Ia + η1E − ρ2Q− δ1Q− µQ− ρ1Q]

+

(

1−
H∗

H

)

[ρ1Q− µH − γ3H − δ2H + η4Is]

+

(

1−
V ∗

V

)

[λ2S − λ1V − µV − δ3V ]

In endemic situation, β(1−h)S∗I∗s+βα(1−h)S
∗I∗a = (θ+η1+µ)E

∗, ρθE∗ = (γ1+η2+

η4+µ)I
∗
s , (1−ρ)θE

∗ = (δ4+γ2+η3+µ)I
∗
a , η2I

∗
s +η3I

∗
a+η1E

∗ = (ρ2+δ1+µ+ρ1)Q
∗,

ρ1Q
∗ + η4I

∗
s = (µ+ γ3 + δ2)H

∗, λ2S
∗ = (λ1 + µ+ δ3)V

∗. Using this we obtain,
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dL

dt
= β(1 − h)SIs

(

1−
E∗

E

)

+ β(1 − h)S∗I∗s

(

1−
E

E∗

)

+ αβ(1 − h)SIa

(

1−
E∗

E

)

+ αβ(1 − h)S∗I∗a

(

1−
E

E∗

)

+ ρθE

(

1−
I∗s
Is

)

+ ρθE∗

(

1−
Is
I∗s

)

+ (1− ρ)θE

(

1−
I∗a
Ia

)

+ (1− ρ)θE∗

(

1−
Ia
I∗a

)

+ (η2Is + η3Ia + η1E)

(

1−
Q∗

Q

)

+ (η2I
∗
s + η3I

∗
a + η1E

∗)

(

1−
Q

Q∗

)

+ (ρ1Q+ η4Is)

(

1−
H∗

H

)

+ (ρ1Q
∗ + η4I

∗
s )

(

1−
H

H∗

)

+ λ2S

(

1−
V ∗

V

)

+ λ2S
∗

(

1−
V

V ∗

)

.

Since E ≤ E∗, Is ≤ I∗s , Ia ≤ I∗a , Q ≤ Q∗, H ≤ H∗ and V ≤ V ∗.

dL

dt
= β(1 − h)S∗I∗s

(

2−
E∗

E
−

E

E∗

)

+ αβ(1 − h)S∗I∗a

(

2−
E∗

E
−

E

E∗

)

+ ρθE∗

(

2−
I∗s
Is

−
Is
I∗s

)

+ (1− ρ)θE∗

(

2−
I∗a
Ia

−
Ia
I∗a

)

+ (η2I
∗
s + η3I

∗
a + η1E

∗)

(

2−
Q∗

Q
−

Q

Q∗

)

+ (ρ1Q
∗ + η4I

∗
s )

(

2−
H∗

H
−

H

H∗

)

+ λ2S
∗

(

2−
V ∗

V
−

V

V ∗

)

Since by arithmetic-geometric

(

2−
E∗

E
−
E

E∗

)

≤ 0,

(

2−
I∗s
Is

−
Is
I∗s

)

≤ 0,

(

2−
I∗a
Ia

−

Ia
I∗a

)

≤ 0,

(

2−
Q∗

Q
−

Q

Q∗

)

≤ 0,

(

2−
H∗

H
−

H

H∗

)

≤ 0,

(

2−
V ∗

V
−

V

V ∗

)

≤ 0.

⇒
dL

dt
≤ 0 and

dL

dt
= 0, if E = E∗, Is = I∗s , Ia = I∗a , Q = Q∗, H = H∗, V = V ∗.

Hence, by LaSalle’s Invariance Principle [12], the endemic equilibrium χ1 is globally

asymptotically stable. �

4.4. Numerical Simulation We apply the model on the seven different states of

India: Maharashtra, Delhi, Kerala, Uttar Pradesh, Haryana, Madhya Pradesh and

Karnataka.

All other parameter values are same for both situation and values in bracket

indicates the value of that parameter for the disease free equilibrium (DFE).
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For example Maharashtra, the average death rate, (µ), used for the simulation

will be
1

71.9 × 365
= 3.81 × 10−5 per day with growth rate µN0 = 4, 758.85.

It is assumed that 60% of newly acquired infections are symptomatic and 40%

of susceptible take preventative measures. α is 1.5 for the asymptomatic class’s

relative infectiousness. Quarantined population with symptoms moved into hospi-

talized class at a rate ρ1 =
1

7
= 0.143/day, whereas without symptoms they are

moved into the susceptible population at a rate ρ2 =
1

14
= 0.0714/day. For people

in the hospitalized and asymptomatic classifications, the average remission time is

set at 14 days and 7 days, respectively. Hence, their correspondence recovery rates

are δ1 = 0.0714/day and δ2 = 0.143/day respectively. The parameter values utilized

in the simulations are provided in Table 2. For both the epidemic and disease-free

conditions of the simulation, we presume the population’s initial values in the various

compartments to be as follows:

S(0) = N0, E(0) = 1000, Is(0) = 100, Ia(0) = 100, Q(0) = 50, H(0) = 50,

R(0) = 700, V (0) = 1000. We plot the graph of the above mentioned Indian states

for both the conditions (DFE and EE) using MATLAB software. Figures 4.1 to

4.7 illustrate the stability of endemic equilibrium point for the Indian states across

various epidemiological classes, including susceptible, exposed, infected severity, in-

fected mildly, quarantined, hospitalized, recovered, and vaccinated. One can easily

observe that as R0 > 1, the epidemic curve approaches to its endemic equilibrium

point globally as t→ ∞.

A comparative analysis reveals a consistent trend across all states within their

respective classes. Notably, there is a discernible pattern wherein the infected com-

partments exhibit an incremental growth until reaching a saturation point, leading

to the establishment of an endemic scenario.

Figures 4.8 to 4.14 delineate the disease-free equilibrium status for the Indian

states of Maharashtra, Delhi, Kerala, Uttar Pradesh, Haryana, Madhya Pradesh,

and Karnataka, respectively. Examination of the epidemic curves reveals that, with

the exception of the susceptible class, all other compartments exhibit a zero incli-

nation. Consequently, in this scenario, the disease is poised for eradication. One

can easily observe that as R0 < 1 , the epidemic curve approaches to its disease-free

equilibrium point locally as well as globally as t→ ∞.
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Table 2. Value of parameters

Parameter Maharashtra Delhi Kerala U.P. Haryana M.P. Karnataka Source

L.E. 71.9 73.5 73.5 66.9 69.4 66.7 69.7 [8]

N0 124,904,071 19,301,096 34,698,876 231,502,578 28,900,667 85,002,417 69,599,762 [9]

π 4758.85 719.93 1294.27 9468.45 1141.58 3485.1 2735.27 Calculate

βEE 3.0 × 10−8 2.9×10−7 7.0×10−8 9.0×10−8 7.0×10−7 5.0×10−8 7.7×
10−8

Assumed

βDFE 7.0 ×10−9 5×10−8 7.0×10−9 4.0×10−9 7.7×10−9 1.0×10−8 1.0×
10−8

Assumed

h 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Assumed

µ 3.81×10−5 3.73×10−5 3.73×10−5 4.09×10−5 3.95×10−5 4.1×10−5 3.93×
10−5

Calculate

a 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Assumed

σ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Assumed

θ 0.438 0.438 0.438 0.438 0.438 0.438 0.438 Assumed

ρ 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Assumed

ρ1 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1/7
As-
sumed

ρ2 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14
As-
sumed

δ1 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1/7
As-
sumed

δ2 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 0.0714 1/14
As-
sumed

δ3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1/4
As-
sumed

δ4 0.143 0.143 0.143 0.143 0.143 0.143 0.143 1/7
As-
sumed

δ5 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) Assumed

η1 0.123 0.123 0.123 0.123 0.123 0.123 0.123 Assumed

η2 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Assumed

η3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Assumed

η4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Assumed

γ1 0.018 0.0615 0.0515 0.0415 0.0034 0.048 0.001 Estimated

γ2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Assumed

γ3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Assumed

λ1 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) 0.005 (0) Assumed

λ2 0.00005 (0) 0.00005
(0)

0.00005
(0)

0.00005
(0)

0.00005
(0)

0.00005
(0)

0.00005
(0)

Assumed
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Figure 5.1: Various parameters’ effects on basic reproduction number

5. Sensitivity Analysis

The direct differentiation method is used to do the sensitivity analysis. The

sensitivity index ψR0
ω of a parameter ω is calculated by

ψR0
ω =

(dR0)

dω
×

ω

R0
.

We take all variables values as 0.001 to examine R0’s sensitivity with regard to other

factors. As compare to other variables the parameters α, β, θ, ρ and π has a positive

influence effect on the rate of reproduction, while remaining other parameters has

negative influence (see Figure 5.1).

Positive influence means reducing the value of that parameter can lead to deduct

the number of infective and ultimately the basic reproduction number. Whereas

negative influence means increasing the value of that parameter can lead to reduce

the infections.

Now, keeping all variables and parameters values fixed mentioned in Table 2 and

let us change into one parameter on which we want to check the impact on different

infected classes.

Furthermore, the impact of changing of the transmission rate β on exposed,

asymptotically infected and infected compartments respectively can be seen in the

following Figures 5.2 and 5.3.
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Figure 5.2: Effect of change transmission rate β rate in Maharashtra, Madhya
Pradesh, Delhi

Figure 5.3: Effect of change transmission rate β rate in Haryana, Kerala,
Karnataka and Uttar Pradesh

In the Figure 5.2 and Figure 5.3 one can easily observe that as the transmis-

sion rate β decreases through lockdown, social distancing etc. all of the infective

compartments exhibits relatively decrease in infection.

Additionally, to check the effect of isolation of exposed population on exposed,

infected and asymptotically infected compartments, since the rate of isolation η1

of exposed population has negative influence, we increase its value to reduce the

infection. The change and impact can be seen in the following Figure 5.4 and
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Figure 5.4: Effect of change in exposed isolation rate η1 in Maharashtra, Madhya
Pradesh, Delhi

Figure 5.5: Effect of change in exposed isolation rate η1 in Haryana, Kerala,
Karnataka and Uttar Pradesh

Figure 5.5. In the Figure 5.4 and 5.5 one can easily observe that as the prevention

parameter value η1 increases, the number of asymptotically infected and infected

individuals decreases significantly. Thus isolation at initial stage can reduce the

infection significantly.

Since some of the parameter values are taken from other sources and some are

assumed, as a future scope of this study, one can find the appropriate value of

parameters to find the best fitting with real data.
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6. Conclusion

Model simulations explore the fact that whenever R0 > 1 , the disease spreads

rapidly. Moreover, in a disease free condition (i.e.R0 < 1) , the disease is in under

control. The paper concludes that these seven states display similar tendencies in

both the conditions (DFE and EE) for all the corresponding compartments. To

reduce the value of the basic reproduction number, the government should focus

on implementing early stage prevention measures. This study demonstrates the

importance of isolating the exposed population, the impact of vaccinations, and the

impact of lowering the transmission rate on different infected groups. Hence, to

control the epidemic’s spread, the authorities need to use the same strategies and

impose all possible prevention measures, such as lockdown, quarantine/isolation, use

of sanitizers, and social distance, in all of the infected states.
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