• Title/Summary/Keyword: news analysis

Search Result 1,115, Processing Time 0.025 seconds

Trend Analysis of ICT Accessibility and Utilization Levels of Korean Students based on OECD PISA Data (OECD PISA 자료를 활용한 우리나라 학생들의 ICT 접근 및 활용 수준 추이 분석)

  • Kim, Hye-Sook;Kim, Han-Sung;Kim, Jin-Sook;Shin, An-Na
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.17-43
    • /
    • 2017
  • The purpose of this study is to investigate the directions of information and communication technology(ICT) education in K-12 based on the analysis of ICT accessibility and utilization levels of Korean students. To this end, we analyzed the trends of Korea and OECD countries by survey period, focusing on the OECD PISA 'ICT familiarity survey' conducted in 2009, 2012 and 2015. The surveyed subjects were 15 year-old students and the analysis method was calculated based on the sampling weights. The results of the analysis of Korean students are as follows: First, ICT accessibility at home increased from 2009 to 2015, but was consistently lower than the OECD average. Second, the overall Internet usage time was lower than the OECD average. The Internet usage time on weekdays increased from 2012 to 2015, but on weekends decreased. Third, the ICT accessibility in schools decreased from 2009 to 2012, and increased in 2015, but was lower than the OECD average in 2015. Fourth, the student age ratio of first time computer usage increased from 2012 to 2015 and the average age for computer usage began before age 6, but was below the OECD average. Lastly, student use of digital devices for items such as Internet searches for entertainment and SNS activity has increased from 2012 to 2015, but the level of everyday use such as e-mail, online chat, program downloading, and reading Internet news has decreased. Based on these results, this study suggested policy plans for the improvement of ICT education for elementary and secondary school students in Korea.

A discourse analysis for Korean women's leisure culture from 1960s to the present - Application of semantic network analysis (현대 한국 여성의 여가문화에 대한 담론 변화 연구 - 1960-2010년대 신문 기사의 의미연결망 분석을 중심으로 -)

  • Cha, Min-Kyung
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.197-229
    • /
    • 2018
  • This study investigates the social discourse for Korean women's leisure culture and analyzes the conflicts between the ideologies which affected to the women's leisure issues with the social and cultural context. For this purpose, this study analyzed a sum of 652,513 words of 4,614 news articles about Korean women's leisure by applying semantic network analysis. In the 1960s, both the enthusiasm for 'modernization' and 'good wife and wise mother' ideologies were simultaneously affected to women's leisure discourse. 'The good wife and wise mother' ideology have a stronger impact on women's leisure culture in the 1970s. In the 1980s, even though the Korean women had higher education background and advanced social status compared to the former periods, both 'good wife and wise mother' ideology and 'modern career women' ideology conflicted each other. The conflicts between the two ideologies were intensified in the 1990s and the women tended to sacrifice their leisure in the course of the ideological conflicts in the 2000s. In the 2010s, women who exhausted due to the intensified conflicts between the two ideologies showed preference for passive forms of leisure.

Analysis of Changes in Discourse of Major Media on Park Issues - Focusing on Newspaper Articles Published from 1995 to 2019 - (공원 이슈에 대한 주요 언론의 담론변화분석 - 1995년부터 2019년까지 신문 기사를 중심으로 -)

  • Ko, Ha-jung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.46-58
    • /
    • 2021
  • Parks became essential to people after the introduction of modern parks in Korea. Following mayoral elections by popular vote, issues surrounding parks, such as the creation of parks, have arisen and have been publicized by the media, allowing for the formation of discourse. Accordingly, this study conducted a topic analysis by collecting news articles from major media outlets in Korea that addressed issues related to parks since 1995, after the introduction of mayoral elections by popular vote, and analyzed changes over time in the discourse on parks through semantic network analysis. As a result of a Latent Dirichlet allocation topic modeling analysis, the following five topics were classified: urban park expansion (Topic 1), historical and cultural parks (Topic 2), use programs (Topic 3), zoo event (Topic 4), and conflicts in the park creation process (Topic 5). The park-related discourse addressed by the media is as follows. First, the creation process and conflicts regarding the quantitative expansion of parks are treated as the central discourse. Second, the names of parks appear as keywords every time a new park is created, and they are mentioned continuously from then on, thereby playing an important role in the formation of discourse. Third, 'residents' form discourse about the public nature of the park as the principal agent in park-related media. This study has significance in that it examines how parks are interpreted and how discourse is formed and changed by the media. It is expected that discourse on parks will be addressed from various perspectives in further research focusing on other media, such as regional and specialized magazines.

Seasonal analysis of Beach-related Issues using Local Newspaper Articles and Topic Modeling (지역신문기사 자료와 토픽모델링을 이용한 해변 관련 계절별 현안분석)

  • Yoo, Mu-Sang;Jeong, Su-Yeon;Kim, Geon-Hu;Sohn, Chul
    • Journal of the Korean Regional Science Association
    • /
    • v.34 no.4
    • /
    • pp.19-34
    • /
    • 2018
  • The purpose of this study is to analyze the seasonal issues using the local newspaper articles with the keyword beach from 2004 to 2017. Topic modeling and Time series regression analysis based on open source programs were performed for analysis. Topic modeling results showed 35 topics in spring, 47 topics in summer, 36 topics in autumn and 35 topics in winter. The common themes were 'beaches', 'festivals and events', 'accident and environmental issues', 'tourism', 'development and sale', 'administration and policy' and 'weather'. Time series regression analysis showed in the spring, 5 Hot-Topics and 2 Cold-Topic were found out of the 35 topics. In the summer, 6 Hot-Topics and 3 Cold-Topic were found out of the 47 topics. In the autumn, 4 Hot-Topics and 3 Cold-Topic were found out of the 36 topics. In the winter, 3 Hot-Topics and 3 Cold-Topic were found out of the 35 topics. And for each season, topics that do not fall into the Hot-Topic and Cold-Topic are classified as Neutral-Topic. In this study if seasonal uses are different such as beaches are deemed that seasonal topic modeling for analysis of regional issues will yield more useful results and enable detailed diagnosis.

Exploring Opinions on COVID-19 Vaccines through Analyzing Twitter Posts (트위터 게시물 분석을 통한 코로나바이러스감염증-19 백신에 대한 의견 탐색)

  • Jung, Woojin;Kim, Kyuli;Yoo, Seunghee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.4
    • /
    • pp.113-128
    • /
    • 2021
  • In this study, we aimed to understand the public opinion on COVID-19 vaccine. To achieve the goal, we analyzed COVID-19 vaccine-related Twitter posts. 45,413 tweets posted from March 16, 2020 to March 15, 2021 including COVID-19 vaccine names as keywords were collected. The 12 vaccine names used for data collection included 'Pfizer', 'AstraZeneca', 'Modena', 'Jansen', 'NovaVax', 'Sinopharm', 'SinoVac', 'Sputnik V', 'Bharat', 'KhanSino', 'Chumakov', and 'VECTOR' in the order of the number of collected posts. The collected posts were analyzed manually and automatedly through keyword analysis, sentiment analysis, and topic modeling to understand the opinions for the investigated vaccines. According to the results, there were generally more negative posts about vaccines than positive posts. Anxiety about the aftereffects of vaccination and distrust in the efficacy of vaccines were identified as major negative factors for vaccines. On the contrary, the anticipation for the suppression of the spread of coronavirus following vaccination was identified as a positive social factor for vaccines. Different from previous studies that investigated opinions about COVID-19 vaccines through mass media data such as news articles, this study explores opinions of social media users using keyword analysis, sentiment analysis, and topic modeling. In addition, the results of this study can be used by governmental institutions for making policies to promote vaccination reflecting the social atmosphere.

Text Mining Analysis of Media Coverage of Maritime Sports: Perceptions of Yachting, Rowing, and Canoeing (텍스트마이닝을 활용한 해양스포츠에 대한 언론 보도기사 분석: 요트, 조정, 카누를 중심으로)

  • Ji-Hyeon Kim;Bo-Kyeong Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.609-619
    • /
    • 2023
  • This study aimed to investigate the formation of the social perception of domestic maritime sports using text mining analysis of keywords and topics from domestic media coverage over the past 10 years related to representative maritime sports, including yachting, rowing, and canoeing. The results are as follows: First, term frequency (TF) and word cloud analyses identified the top keywords: "maritime," "competition," "experience," "tourism," "world," "yachting," "canoeing," "leisure," and "participation." Second, semantic network analysis revealed that yachting was correlated with terms like "maritime," "industry," "competition," "leisure," "tourism," "boat," "facilities," and "business"; rowing with terms like "competition" and "Chungju"; and canoeing with terms like "maritime," "competition," "experience," "leisure," and "tourism." Third, topic modeling analysis indicated that yachting, rowing, and canoeing are perceived as elite sports and maritime leisure sports. However, the perception of these sports has been demonstrated to have little impact on society, public opinion, and social transformation. In summary, when considering these results comprehensively, it can be concluded that yachting and canoeing have gradually shifted from being perceived as elite sports to essential elements of the maritime leisure industry. Contrariwise, rowing remains primarily associated with elite sports, and its popularization as a maritime leisure sport appears limited at this time.

Optimizing Language Models through Dataset-Specific Post-Training: A Focus on Financial Sentiment Analysis (데이터 세트별 Post-Training을 통한 언어 모델 최적화 연구: 금융 감성 분석을 중심으로)

  • Hui Do Jung;Jae Heon Kim;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • This research investigates training methods for large language models to accurately identify sentiments and comprehend information about increasing and decreasing fluctuations in the financial domain. The main goal is to identify suitable datasets that enable these models to effectively understand expressions related to financial increases and decreases. For this purpose, we selected sentences from Wall Street Journal that included relevant financial terms and sentences generated by GPT-3.5-turbo-1106 for post-training. We assessed the impact of these datasets on language model performance using Financial PhraseBank, a benchmark dataset for financial sentiment analysis. Our findings demonstrate that post-training FinBERT, a model specialized in finance, outperformed the similarly post-trained BERT, a general domain model. Moreover, post-training with actual financial news proved to be more effective than using generated sentences, though in scenarios requiring higher generalization, models trained on generated sentences performed better. This suggests that aligning the model's domain with the domain of the area intended for improvement and choosing the right dataset are crucial for enhancing a language model's understanding and sentiment prediction accuracy. These results offer a methodology for optimizing language model performance in financial sentiment analysis tasks and suggest future research directions for more nuanced language understanding and sentiment analysis in finance. This research provides valuable insights not only for the financial sector but also for language model training across various domains.

An Analysis of the Support Policy for Small Businesses in the Post-Covid-19 Era Using the LDA Topic Model (LDA 토픽 모델을 활용한 포스트 Covid-19 시대의 소상공인 지원정책 분석)

  • Kyung-Do Suh;Jung-il Choi;Pan-Am Choi;Jaerim Jung
    • Journal of Industrial Convergence
    • /
    • v.22 no.6
    • /
    • pp.51-59
    • /
    • 2024
  • The purpose of the paper is to suggest government policies that are practically helpful to small business owners in pandemic situations such as COVID-19. To this end, keyword frequency analysis and word cloud analysis of text mining analysis were performed by crawling news articles centered on the keywords "COVID-19 Support for Small Businesses", "The Impact of Small Businesses by Response System to COVID-19 Infectious Diseases", and "COVID-19 Small Business Economic Policy", and major issues were identified through LDA topic modeling analysis. As a result of conducting LDA topic modeling, the support policy for small business owners formed a topic label with government cash and financial support, and the impact of small business owners according to the COVID-19 infectious disease response system formed a topic label with a government-led quarantine system and an individual-led quarantine system, and the COVID-19 economic policy formed a topic label with a policy for small business owners to acquire economic crisis and self-sustainability. Focusing on the organized topic label, it was intended to provide basic data for small business owners to understand the damage reduction policy for small business owners and the policy for enhancing market competitiveness in the future pandemic situation.

A Topic Modeling Approach to the Analysis of Seniors' Happiness and Unhappiness in Korea (토픽 모델링 기반 한국 노인의 행복과 불행 이슈 분석)

  • Dong ji Moon;Dine Yon;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.139-161
    • /
    • 2018
  • As Korea became one of the oldest countries in the world, successful aging emerged as an important issue to individuals as well as to society. This study aims to determine not only the Korean seniors' happiness and unhappiness factors but also the means to enhance their happiness and deal with unhappiness. We collected news articles related to the happiness and unhappiness of seniors with nine keywords based on Alderfer's ERG Theory. We then applied a topic modeling technique, Latent Dirichlet Allocation, to examine the main issues underlying the seniors' happiness and unhappiness. According to the analysis, we investigated the conditions of happiness and unhappiness by inspecting the topics based on each keyword. We also conducted a detailed analysis based on the main factors from topic modeling. We proposed specific ways to increase and overcome the happiness and unhappiness of seniors, respectively, in terms of government, corporate, family, and other social welfare organizations. This study indicates the major factors that affect the happiness and unhappiness of seniors. Specific methods to boost happiness and relief unhappiness are suggested from the additional analysis.

Korean Food Review Analysis Using Large Language Models: Sentiment Analysis and Multi-Labeling for Food Safety Hazard Detection (대형 언어 모델을 활용한 한국어 식품 리뷰 분석: 감성분석과 다중 라벨링을 통한 식품안전 위해 탐지 연구)

  • Eun-Seon Choi;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • Recently, there have been cases reported in the news of individuals experiencing symptoms of food poisoning after consuming raw beef purchased from online platforms, or reviews claiming that cherry tomatoes tasted bitter. This suggests the potential for analyzing food reviews on online platforms to detect food hazards, enabling government agencies, food manufacturers, and distributors to manage consumer food safety risks. This study proposes a classification model that uses sentiment analysis and large language models to analyze food reviews and detect negative ones, multi-labeling key food safety hazards (food poisoning, spoilage, chemical odors, foreign objects). The sentiment analysis model effectively minimized the misclassification of negative reviews with a low False Positive rate using a 'funnel' model. The multi-labeling model for food safety hazards showed high performance with both recall and accuracy over 96% when using GPT-4 Turbo compared to GPT-3.5. Government agencies, food manufacturers, and distributors can use the proposed model to monitor consumer reviews in real-time, detect potential food safety issues early, and manage risks. Such a system can protect corporate brand reputation, enhance consumer protection, and ultimately improve consumer health and safety.