• Title/Summary/Keyword: new shear test condition

Search Result 45, Processing Time 0.034 seconds

An Experimental Study on Load Transfer Capacity for the Planar Joints between Existing and New Slab to Extend an Area of Remodelling apartment (리모델링 아파트의 평면확장시 신/구 슬래브 접합부의 횡방향 하중전달 능력에 관한 실험적 연구)

  • Lim, Byung-Ho;Kim, Seung-Hun;You, Young-Chan;Choi, Ki-Sun;Kang, In-Seok;Chung, Jae-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.25-28
    • /
    • 2006
  • In general, post-installed dowel bars are used as a shear connector to ensure the composite actions between new slabs and existing slabs in an apartment remodelling constructions expecially for enlarging the interior space outward the existing buildings. But, it has not been checked that the connection performance between existing and new slab is satisfactory not only for the structural safety condition but also the for serviceability and dwelling requirements. In this research, an experimental works were presented to evaluate the load transfer capacity for the planar joints between existing and new slab. The existing slabs were obtained from the existing apartment housing which will be demolished, and were retrofitted with carbon fiber plate. Test results showed that the planar joints with post-installed dowel bars behaved in full composite modes until ultimate capacity of test specimens, so sufficient ultimate and serviceability performance are confirmed.

  • PDF

Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.463-476
    • /
    • 2021
  • The concept of using Steel-concrete (SC) composite walls as retaining walls has recently been introduced by the authors and their effectiveness of resisting out-of-plane loads has also been demonstrated. In this paper, an improved analytical formulation based on partial interaction theory, which has previously been developed by the authors, is presented. The improved formulation considers a new loading condition and also accounts for cracking in concrete to simulate the real conditions. Due to a limited number of test specimens, further finite element (FE)simulations are performed in order to verify the analytical procedure in more detail. It is observed that the results from the improved analytical procedure are in excellent agreement with both experimental and numerical results. Moreover, a detailed parametric study is conducted using the developed FE model to investigate effects of different parameters, such as distance between shear connectors, shear connector length, concrete strength, steel plate thickness, concrete cover thickness, wall's width to thickness ratio, and wall's height to thickness ratio, on the behavior of SC composite walls subjected to out-of-plane loads.

Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam (절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • Based on U-shaped composite beam, the new form of AU-composite beam were developed to create economical and efficient components reducing the cost and shortening the length of construction work. Because the U-shaped sections are open and needs to be fixed by topping concrete securely. Therefore, it is required to maintain the U-shaped sections in a structure and to work in the safe condition through construction. It also requires accessories that resist the horizontal shear force for synthesis between the top and bottom of the U-shaped section. To reinforce these shortcomings, a shear connector has been developed with various purposes of steel plate anchors. In this study, the steel plate anchors were directly tested and the shear force was evaluated by the horizontal shear force. The experiment was divided into two types, depending on the applicable deck plates. As a result of the experiment, the continuous type specimens showed greater resistance in both strength and displacement than the ones of stud anchor specimen. In discontinuous type case, due to shear simulations and simple element analysis, the less increase the ratio of width to height and the more shear strength decreased. Thus, the shear strength equation of the stud anchor was modified to suggest the new shear strength based on the testing results.

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine (풍력발전기용 복합재 블레이드의 구조 해석 및 인증시험)

  • Park, Sun-Ho;Han, Kyung-Seop
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750 kW & 2 MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

Load comparison of 750kW WTGS by field test (750kW 풍력발전기 현장시험을 통한 하중 비교)

  • Bang, Jo-Hyug;Hong, Hyeok-Soo;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.303-306
    • /
    • 2008
  • This study proposes an essential process of type certificate, which is load comparison for proving the calculated design load. The load measurement was carried out according to IEC 61400-13 standard and the load calculation was performed with same condition using FLEX 5 code. For more accurate load simulation, the controller parameter of original model at the design stage was modified to site optimized value and some node points are added to coincidence with measurement. The load comparison was performed with various wind parameter, turbulence intensity and wind shear. As a result, simulated loads ware good agreed with the measured load. Therefore, the calculated design loads according to IEC 61400-1 standard were proved to valid.

  • PDF

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.

A Study on the Structural Behavior of the Composite Slab with New-Shaped Deckplate (신형상 데크플레이트를 이용한 합성슬라브의 구조적인 거동에 대한 연구)

  • Huh, Choong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.341-350
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of the composite slabs with the new metal deckplate. The new deckplate can be used as structural member with topping concrete. So several experiments of this structural test and the fire resistance test were done. From this experiments. slabs with new metal deckpklate were verified as composite slabs. In this paper, this verifications were compared with the international design methods. For experiment. 49 specimens were made. the main parameters are deckplate thickness (1.2mm. 1.6mm) depth of topping concrete(85mm. 90mm). support condition(simple, 2-span), shear reinforcment(studs), span(2.7m, 3.0m, 3.3m. 3.6m. 3.9m) and shear span(L/3, L/4, L/7). We analyzed the structural behavior of composite slab throughout the moment-curvature relationship which is obtained with the program using the computer language. Turbo C. From this development for slab system, the reinforced concrete or steel structure building may be easy, economical for construction, And informations about the structural behavior of composite slabs will be utilized to established korea standard.

  • PDF

An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD (PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구)

  • Kim, Hei-Song;Lee, Choon-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine (풍력발전기용 복합재 블레이드의 구조해석 및 인증시험)

  • Park, Sun-Ho;Han, Kyung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.299-302
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF