• 제목/요약/키워드: new plate displacement field

검색결과 70건 처리시간 0.023초

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory

  • Issad, Mohammed Naim;Fekrar, Abdelkader;Bakora, Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.711-719
    • /
    • 2018
  • The present work presents a free vibration and buckling analysis of orthotropic plates by proposing a novel two variable refined plate theory. Contrary to the conventional higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed theory utilizes a novel displacement field which incorporates undetermined integral terms and involves only two unknowns. The governing equations are obtained from the dynamic version of principle of virtual works. The analytical solution of a simply supported orthotropic plate has been determined by using the Navier method. Numerical investigations are performed by employing the proposed model and the obtained results are compared with the existing HSDTs.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates

  • Smain, Bezzina;Aicha, Bessaim;Mohammed Sid Ahmed, Houari;Marc, Azab
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.839-850
    • /
    • 2022
  • This paper presents an analytical solution to study the combined effect of non-local and stretching effect on the vibration of advanced functionally graded (FG) nanoplates. A new quasi-3D plate theory is presented; there are only five unknowns and any shear correction factor is used. A new displacement field with a new shear warping function is proposed. The equilibrium equations of the FG nanoplates are obtained using the Hamilton principle and solved numerically using the Navier technique. The material properties of functionally graded nanoplates are presumed to change according to the power-law distribution of ceramic and metal constituents. The numerical results of this work are compared with those of other published results to indicate the accuracy and convergence of this theory. Hence, a profound parameterstudy is also performed to show the influence of many parameters of the functionally graded nanoplates on the free vibration responses is investigated.

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

A new quasi-3D sinusoidal shear deformation theory for functionally graded plates

  • Benchohra, Mamia;Driz, Hafida;Bakora, Ahmed;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.19-31
    • /
    • 2018
  • In this paper, a new quasi-3D sinusoidal shear deformation theory for functionally graded (FG) plates is proposed. The theory considers both shear deformation and thickness-stretching influences by a trigonometric distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower faces of the plate without employing any shear correction coefficient. The advantage of the proposed model is that it posses a smaller number of variables and governing equations than the existing quasi-3D models, but its results compare well with those of 3D and quasi-3D theories. This benefit is due to the use of undetermined integral unknowns in the displacement field of the present theory. By employing the Hamilton principle, equations of motion are obtained in the present formulation. Closed-form solutions for bending and free vibration problems are determined for simply supported plates. Numerical examples are proposed to check the accuracy of the developed theory.